CIESC Journal ›› 2019, Vol. 70 ›› Issue (11): 4207-4215.DOI: 10.11949/0438-1157.20190583
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Yi ZHANG1(),Yulong BAI1,Dingling LUO2,Jianzhou LU2,Yanjun GUAN1,Kai ZHANG1()
Received:
2019-05-28
Revised:
2019-08-08
Online:
2019-11-05
Published:
2019-11-05
Contact:
Kai ZHANG
张仪1(),白玉龙1,骆丁玲2,路建洲2,关彦军1,张锴1()
通讯作者:
张锴
作者简介:
张仪(1988—),男,博士研究生,基金资助:
CLC Number:
Yi ZHANG, Yulong BAI, Dingling LUO, Jianzhou LU, Yanjun GUAN, Kai ZHANG. Effect of drag models on CFD simulations for homogeneous liquid-solid fluidization[J]. CIESC Journal, 2019, 70(11): 4207-4215.
张仪, 白玉龙, 骆丁玲, 路建洲, 关彦军, 张锴. 液固散式流态化CFD模拟中曳力模型的影响[J]. 化工学报, 2019, 70(11): 4207-4215.
Add to citation manager EndNote|Ris|BibTeX
Description | Experiment 1[ | Experiment 2[ | ||||
---|---|---|---|---|---|---|
Case 1 | Case 2 | Case 3 | Case 4 | Case 5 | Case 6 | |
physical properties | ||||||
liquid density (ρl)/(kg·m-3) | 999.5 | 999.5 | 994.6 | 1000 | 1000 | 1000 |
liquid viscosity (μl)/ (Pa·s) | 1.24×10-3 | 1.24×10-3 | 7.44×10-4 | 1.0×10-3 | 1.0×10-3 | 1.0×10-3 |
particle diameter (dp)/mm | 1.13 | 1.13 | 1.13 | 3.0 | 3.0 | 3.0 |
particle density (ρs)/(kg·m-3) | 2540 | 2540 | 2540 | 2500 | 2500 | 2500 |
operating conditions | ||||||
liquid superficial velocity (u0)/m·s-1 | 0.0246 | 0.0851 | 0.0932 | 0.07 | 0.10 | 0.13 |
particle Reynolds number (Rep) based on superficial velocity | 22 | 78 | 141 | 210 | 300 | 390 |
Table 1 Physical properties and operating conditions
Description | Experiment 1[ | Experiment 2[ | ||||
---|---|---|---|---|---|---|
Case 1 | Case 2 | Case 3 | Case 4 | Case 5 | Case 6 | |
physical properties | ||||||
liquid density (ρl)/(kg·m-3) | 999.5 | 999.5 | 994.6 | 1000 | 1000 | 1000 |
liquid viscosity (μl)/ (Pa·s) | 1.24×10-3 | 1.24×10-3 | 7.44×10-4 | 1.0×10-3 | 1.0×10-3 | 1.0×10-3 |
particle diameter (dp)/mm | 1.13 | 1.13 | 1.13 | 3.0 | 3.0 | 3.0 |
particle density (ρs)/(kg·m-3) | 2540 | 2540 | 2540 | 2500 | 2500 | 2500 |
operating conditions | ||||||
liquid superficial velocity (u0)/m·s-1 | 0.0246 | 0.0851 | 0.0932 | 0.07 | 0.10 | 0.13 |
particle Reynolds number (Rep) based on superficial velocity | 22 | 78 | 141 | 210 | 300 | 390 |
Description | Experiment 1[ | Experiment 2[ |
---|---|---|
bed height ×bed width/m | 1.1 × 0.127 | 1.5 × 0.14 |
initial bed height/m | 0.20 | 0.40 |
inlet boundary | uniform velocity inlet | |
outlet boundary | pressure outlet, 1.013×105 Pa | |
wall boundary | no slip (both solid and liquid phase) | |
initial solids volume fraction | 0.60 | |
maximum solids volume fraction | 0.63 |
Table 2 Boundary conditions
Description | Experiment 1[ | Experiment 2[ |
---|---|---|
bed height ×bed width/m | 1.1 × 0.127 | 1.5 × 0.14 |
initial bed height/m | 0.20 | 0.40 |
inlet boundary | uniform velocity inlet | |
outlet boundary | pressure outlet, 1.013×105 Pa | |
wall boundary | no slip (both solid and liquid phase) | |
initial solids volume fraction | 0.60 | |
maximum solids volume fraction | 0.63 |
Name of mesh | Mesh size(ΔX × ΔY) | Time step |
---|---|---|
independence study of mesh | ||
Mesh A | 10 mm×5 mm | 0.002 s |
Mesh B | 5 mm×10 mm | 0.002 s |
Mesh C | 5 mm×5 mm | 0.002 s |
Mesh D | 2.5 mm×5 mm | 0.002 s |
Mesh E | 5 mm×2.5 mm | 0.002 s |
independence study of time step | ||
Mesh C | 5 mm×5 mm | 0.005 s, 0.002 s, 0.001 s |
Table 3 Strategies to independence study
Name of mesh | Mesh size(ΔX × ΔY) | Time step |
---|---|---|
independence study of mesh | ||
Mesh A | 10 mm×5 mm | 0.002 s |
Mesh B | 5 mm×10 mm | 0.002 s |
Mesh C | 5 mm×5 mm | 0.002 s |
Mesh D | 2.5 mm×5 mm | 0.002 s |
Mesh E | 5 mm×2.5 mm | 0.002 s |
independence study of time step | ||
Mesh C | 5 mm×5 mm | 0.005 s, 0.002 s, 0.001 s |
1 | 金涌, 祝京旭, 汪展文, 等. 流态化工程原理[M]. 北京: 清华大学出版社, 2001. |
JinY, ZhuJ X, WangZ W, et al. Fluidization Engineering Principles[M]. Beijing: Tsinghua University Press, 2001. | |
2 | 李洪钟, 郭幕孙. 气固流态化的散式化[M]. 北京: 化学工业出版社, 2002. |
LiH Z, GuoM S. Particulatization of Gas-Solids Fluidization[M].Beijing: Chemical Industry Press, 2002. | |
3 | 李静海, 欧阳洁, 高士秋, 等. 颗粒流体复杂系统的多尺度模拟[M]. 北京: 科学出版社, 2005. |
LiJ H, OuyangJ, GaoS Q, et al. Multi-Scale Simulation of Particle-Fluid Complex Systems[M]. Beijing: Science Press, 2005. | |
4 | FeliceR D. Hydrodynamics of liquid fluidisation[J]. Chemical Engineering Science, 1995, 50(8): 1213-1245. |
5 | StanlyR, ShoevG. Detailed analysis of recent drag models using multiple cases of mono-disperse fluidized beds with Geldart-B and Geldart-D particles[J]. Chemical Engineering Science, 2018, 188: 132-149. |
6 | ZhuL T, RashidT A B, LuoZ H. Comprehensive validation analysis of sub-grid drag and wall corrections for coarse-grid two-fluid modeling[J]. Chemical Engineering Science, 2019, 196: 478-492. |
7 | CornelissenJ T, TaghipourF, EscudieR, et al. CFD modelling of a liquid-solid fluidized bed[J]. Chemical Engineering Science, 2007, 62(22): 6334-6348. |
8 | PanneerselvamR, SavithriS, SurenderG D, et al. CFD based investigations on hydrodynamics and energy dissipation due to solid motion in liquid fluidised bed[J]. Chemical Engineering Journal, 2007, 132(1): 159-171. |
9 | 刘国栋, 王帅, 陈晶晶, 等. 液固流化床流动特性的数值模拟[J]. 工程热物理学报, 2010, 31(4): 617-620. |
LiuG D, WangS, ChenJ J, et al. Numerical simulation of flow behavior in liquid-solid fluidized bed[J]. Journal of Engineering Thermophysics, 2010, 31(4): 617-620. | |
10 | WangS, LiX, WuY, et al. Simulation of flow behavior of particles in a liquid-solid fluidized bed[J]. Industrial & Engineering Chemistry Research, 2010, 49(20): 10116-10124. |
11 | 姚秀颖, 吴桂英, 关彦军, 等. 液固流化床内固含率时空分布特性的CFD模拟[J]. 化工学报, 2010, 61(9): 2287-2295. |
YaoX Y, WuG Y, GuanY J, et al. CFD simulation for spatio-temporal distribution of solid holdup in liquid-fluidized beds[J]. CIESC Journal, 2010, 61(9): 2287-2295. | |
12 | ZhangK, GuanY, YaoX, et al. Two- and three-dimensional computational studies of liquid-solid fluidization[J]. Powder Technology, 2013, 235: 180-191. |
13 | VisuriO, WierinkG, AlopaeusV, et al. Investigation of drag models in CFD modeling and comparison to experiments of liquid-solid fluidized systems[J]. International Journal of Mineral Processing, 2012, 104: 58-70. |
14 | GidaspowD. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions[M]. Boston: Academic Press, 1994. |
15 | DiFelice R. The voidage function for fluid-particle interaction systems[J]. International Journal of Multiphase Flow, 1994, 20(1): 153-159. |
16 | SyamlalM, O’BrienT J. Simulation of granular layer inversion in liquid fluidized beds[J]. International Journal of Multiphase Flow, 1988, 14(4): 473-481. |
17 | HuilinL, GidaspowD. Hydrodynamics of binary fluidization in a riser: CFD simulation using two granular temperatures[J]. Chemical Engineering Science, 2003, 58(16): 3777-3792. |
18 | DallavalleJ M. Micrometrics: The Technology of Fine Particles[M]. London: Pitman, 1948. |
19 | GibilaroL G, FeliceR D, WaldramS P, et al. Generalized friction factor and drag coefficient correlations for fluid-particle interactions[J]. Chemical Engineering Science, 1985, 40(10): 1817-1823. |
20 | 邱小平, 王利民, 杨宁. 耦合EMMS曳力与简化双流体模型的气固流动模拟[J]. 化工学报, 2018, 69(5): 1867-1872. |
QiuX P, WangL M, YangN. Simplified two-fluid model coupled with EMMS drag for simulating gas-solid flow[J]. CIESC Journal, 2018, 69(5): 1867-1872. | |
21 | WachemV B, SchoutenJ C, BleekV D, et al. Comparative analysis of CFD models of dense gas-solid systems[J]. AIChE Journal, 2001, 47(5): 1035-1051. |
22 | BrandaniS, ZhangK. A new model for the prediction of the behaviour of fluidized beds[J]. Powder Technology, 2006, 16(1/2):80-87. |
23 | LimtrakulS, ChenJ, DudukovicM P, et al. Solids motion and holdup profiles in liquid fluidized beds[J]. Chemical Engineering Science, 2005, 60(7): 1889-1900. |
24 | 张锴, BrandaniS. 流化床内颗粒流体两相流的CFD模拟[J]. 化工学报, 2010, 61(9): 2192-2207. |
ZhangK, BrandaniS. CFD simulation of particle-fluid two-phase flow in fluidized beds[J]. CIESC Journal, 2010, 61(9): 2192-2207. | |
25 | ErgunS. Fluid flow through packed columns[J]. Chemical Engineering and Processing, 1952, 48(2): 89-94. |
26 | WenC Y, YuY H. Mechanics of fluidization[J]. Chemical Engineering Progress Symposium Series, 1966, 62: 100-111. |
27 | van der HoefM A, BeetstraR, KuipersJ A M. Lattice Boltzmann simulations of low Reynolds number flow past mono- and bidisperse arrays of spheres: results for the permeability and drag force[J]. Journal of Fluid Mechanics, 2005, 528: 233-254. |
28 | BeetstraR, van der HoefM A, KuipersJ A M, et al. Drag force of intermediate Reynolds number flow past mono- and bidisperse arrays of spheres[J]. AIChE Journal, 2007, 53(2): 489-501. |
29 | 李佑楚. 流态化技术发展及其应用[J]. 科学, 1993, (3): 30-34. |
LiY C. Development and application of fluidization technology[J]. Science, 1993, (3): 30-34. | |
30 | CarlosC R, RichardsonJ F. Solids movement in liquid fluidised beds(Ⅰ): Particle velocity distribution[J]. Chemical Engineering Science, 1968, 23(8): 813-824. |
31 | JainS, SaraswatP, JainV, et al. Investigation of liquid-solids fluidized bed of different particle size through radioactive particle tracking techniques[J]. Journal of Radioanalytical and Nuclear Chemistry, 2014, 302(3): 1309-1313. |
32 | PeiP, ZhangK, WenD S, et al. Comparative analysis of CFD models for jetting fluidized beds: the effect of inter-phase drag force[J]. Powder Technology, 2012, 221: 114-122. |
[1] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[2] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[3] | Kaijie WEN, Li GUO, Zhaojie XIA, Jianhua CHEN. A rapid simulation method of gas-solid flow by coupling CFD and deep learning [J]. CIESC Journal, 2023, 74(9): 3775-3785. |
[4] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[5] | Chao NIU, Shengqiang SHEN, Yan YANG, Bonian PAN, Yiqiao LI. Flow process calculation and performance analysis of methane BOG ejector [J]. CIESC Journal, 2023, 74(7): 2858-2868. |
[6] | Xuanzhi HE, Yongqing HE, Guiye WEN, Feng JIAO. Ferrofluid droplet neck self-similar breakup behavior [J]. CIESC Journal, 2023, 74(7): 2889-2897. |
[7] | Ming DONG, Jinliang XU, Guanglin LIU. Molecular dynamics study on heterogeneous characteristics of supercritical water [J]. CIESC Journal, 2023, 74(7): 2836-2847. |
[8] | Zhihang ZHENG, Junnan MA, Zihan YAN, Chunxi LU. Study on the pressure pulsation characteristics in jet influence zone of riser [J]. CIESC Journal, 2023, 74(6): 2335-2350. |
[9] | Xin DONG, Yongrui SHAN, Yinuo LIU, Ying FENG, Jianwei ZHANG. Numerical simulation of bubble plume vortex characteristics for non-Newtonian fluids [J]. CIESC Journal, 2023, 74(5): 1950-1964. |
[10] | Zihan YUAN, Shuyan WANG, Baoli SHAO, Lei XIE, Xi CHEN, Yimei MA. Investigation on flow characteristics of wet particles with power-law liquid-solid drag models in fluidized bed [J]. CIESC Journal, 2023, 74(5): 2000-2012. |
[11] | Jinsheng REN, Kerun LIU, Zhiwei JIAO, Jiaxiang LIU, Yuan YU. Research on the mechanism of disaggregation of particle aggregates near the guide vanes of turbo air classifier [J]. CIESC Journal, 2023, 74(4): 1528-1538. |
[12] | Airan ZHOU, Ping LU, Jianhui XIA, Dongqin LI, Jie GUO, Ming DU, Lichun DONG. Scarring analysis and numerical simulation of TiCl4 oxidation reactor in chloride process of titanium dioxide [J]. CIESC Journal, 2023, 74(4): 1499-1508. |
[13] | Xinya LI, Lei XING, Minghu JIANG, Lixin ZHAO. Research on performance of downhole oil-water separation hydrocyclone enhanced by inverted cone gas injection [J]. CIESC Journal, 2023, 74(3): 1134-1144. |
[14] | Shaohang YAN, Tianwei LAI, Yanwu WANG, Yu HOU, Shuangtao CHEN. Visual experimental study on cavitation of R134a in micro clearance [J]. CIESC Journal, 2023, 74(3): 1054-1061. |
[15] | Weizheng ZHANG, Jijun ZHAO, Xuezhong MA, Qixuan ZHANG, Yixiang PANG, Juntao ZHANG. Analysis of turbulence effect on face groove cooling performance of high-speed mechanical seals [J]. CIESC Journal, 2023, 74(3): 1228-1238. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||