CIESC Journal ›› 2023, Vol. 74 ›› Issue (4): 1528-1538.DOI: 10.11949/0438-1157.20221568
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Jinsheng REN1(), Kerun LIU1, Zhiwei JIAO1, Jiaxiang LIU2, Yuan YU1()
Received:
2022-12-05
Revised:
2023-02-09
Online:
2023-06-02
Published:
2023-04-05
Contact:
Yuan YU
任金胜1(), 刘克润1, 焦志伟1, 刘家祥2, 于源1()
通讯作者:
于源
作者简介:
任金胜(1998—),男,硕士研究生,renjs630@163.com
基金资助:
CLC Number:
Jinsheng REN, Kerun LIU, Zhiwei JIAO, Jiaxiang LIU, Yuan YU. Research on the mechanism of disaggregation of particle aggregates near the guide vanes of turbo air classifier[J]. CIESC Journal, 2023, 74(4): 1528-1538.
任金胜, 刘克润, 焦志伟, 刘家祥, 于源. 涡流空气分级机近导叶处团聚体解团机理研究[J]. 化工学报, 2023, 74(4): 1528-1538.
参数 | 数值 |
---|---|
小颗粒粒径dp/μm | 10 |
团聚体粒径Dagg/μm | 30 |
颗粒密度 | 2150[ |
杨氏模量E | 7.3 |
泊松比μ | 0.17 |
颗粒间碰撞恢复系数ep | 0.75[ |
颗粒间静摩擦因数μrp | 0.75[ |
颗粒间滚动摩擦因数μsp | 0.02[ |
颗粒壁面碰撞恢复系数ew | 0.7[ |
颗粒壁面静摩擦因数μrw | 0.3[ |
颗粒壁面滚动恢复系数μsw | 0.005[ |
表面能参数γ/(J·m-2) | 0.0826[ |
Table 1 Parameter setting of discrete element simulation
参数 | 数值 |
---|---|
小颗粒粒径dp/μm | 10 |
团聚体粒径Dagg/μm | 30 |
颗粒密度 | 2150[ |
杨氏模量E | 7.3 |
泊松比μ | 0.17 |
颗粒间碰撞恢复系数ep | 0.75[ |
颗粒间静摩擦因数μrp | 0.75[ |
颗粒间滚动摩擦因数μsp | 0.02[ |
颗粒壁面碰撞恢复系数ew | 0.7[ |
颗粒壁面静摩擦因数μrw | 0.3[ |
颗粒壁面滚动恢复系数μsw | 0.005[ |
表面能参数γ/(J·m-2) | 0.0826[ |
条件 | 参数 |
---|---|
Dagg | a1=0.26, a2=1, a3=0.5, a4=0 |
3lD | a1=0.068, a2=1, a3=1, a4=4 |
7lD | a1=0.49, a2=3, a3=0.25, a4=1 |
Dagg | a1=1.9, a2=1, a3=2/3, a4=0 |
Table 2 Parameter selection for critical shear stress of aggregates in flow field[44]
条件 | 参数 |
---|---|
Dagg | a1=0.26, a2=1, a3=0.5, a4=0 |
3lD | a1=0.068, a2=1, a3=1, a4=4 |
7lD | a1=0.49, a2=3, a3=0.25, a4=1 |
Dagg | a1=1.9, a2=1, a3=2/3, a4=0 |
入口风速/(m·s-1) | |
---|---|
6 | 4.37 |
12 | 9.96 |
18 | 14.61 |
24 | 19.63 |
Table 3 Average velocity of all particles in X direction v¯X
入口风速/(m·s-1) | |
---|---|
6 | 4.37 |
12 | 9.96 |
18 | 14.61 |
24 | 19.63 |
1 | Gan L L, Xiao Z H, Pan H X, et al. Efficiently production of micron-sized polyethylene terephthalate (PET) powder from waste polyester fibre by physicochemical method[J]. Advanced Powder Technology, 2021, 32(2): 630-636. |
2 | Sadhasivam S, Shanmugam M, Umamaheswaran P D, et al. Zinc oxide nanoparticles: green synthesis and biomedical applications[J]. Journal of Cluster Science, 2021, 32(6): 1441-1455. |
3 | Wang Q K, Wang Y Q, Chang Q B, et al. Preparation of ultrafine spherical Pr-ZrSiO4 pigment by sol-gel-microemulsion method[J]. Silicon, 2020, 12(3): 585-594. |
4 | Xu Z G, Ma X Q, Gao Y E, et al. Multifunctional silica nanoparticles as a promising theranostic platform for biomedical applications[J]. Materials Chemistry Frontiers, 2017, 1(7): 1257-1272. |
5 | Friebel C, Steckel H, Müller B W. Rational design of a dry powder inhaler: device design and optimisation[J]. Journal of Pharmacy and Pharmacology, 2012, 64(9): 1303-1315. |
6 | Kuang C F, Liu Y, Hao X. Creating attoliter detection volume by microsphere photonic nanojet and fluorescence depletion[J]. Optics Communications, 2012, 285(4): 402-406. |
7 | Ku Y L, Kuang C F, Hao X, et al. Superenhanced three-dimensional confinement of light by compound metal-dielectric microspheres[J]. Optics Express, 2012, 20(15): 16981-16991. |
8 | Sun Z K, Yang L J, Wu H, et al. Agglomeration and removal characteristics of fine particles from coal combustion under different turbulent flow fields[J]. Journal of Environmental Sciences, 2020, 89: 113-124. |
9 | Fabrizio S. Particle agglomeration during fluidized bed combustion: mechanisms, early detection and possible countermeasures[J]. Fuel Processing Technology, 2018, 171: 31-38. |
10 | Ogholaja T, Njobuenwu D O, Fairweather M. LES of particle collision and agglomeration in vertical channel flows[M]//Computer Aided Chemical Engineering. Amsterdam: Elsevier, 2018: 555-560. |
11 | 孔令菲, 陈延佩, 王维. 气固流态化中颗粒介尺度结构的动力学研究[J]. 化工学报, 2022, 73(6): 2486-2495. |
Kong L F, Chen Y P, Wang W. Dynamic study of mesoscale structures of particles in gas-solid fluidization[J]. CIESC Journal, 2022, 73(6): 2486-2495. | |
12 | 孙宗康, 张笑丹, 杨林军, 等. 化学与湍流团聚耦合促进燃煤细颗粒物团聚与脱除[J]. 化工学报, 2020, 71(3): 1317-1325. |
Sun Z K, Zhang X D, Yang L J, et al. Promoting the agglomeration and removal of coal-fired fine particles by coupling of chemical and turbulent agglomeration[J]. CIESC Journal, 2020, 71(3): 1317-1325. | |
13 | Rumpf H. Grundlagen und methoden des granulierens (3): Überblick über Die technischen granulierverfahren[J]. Chemie Ingenieur Technik, 1958, 30(5): 329-336. |
14 | Schubert E. Handbuch der Mechanischen Verfahrenstechnik[M]. Weinheim: Wiley-VCH, 2002. |
15 | Weiler C, Wolkenhauer M, Trunk M, et al. New model describing the total dispersion of dry powder agglomerates[J]. Powder Technology, 2010, 203(2): 248-253. |
16 | Liu R L, You C F, Yang R C, et al. Direct numerical simulation of kinematics and thermophoretic deposition of inhalable particles in turbulent duct flows[J]. Aerosol Science and Technology, 2010, 44(12): 1146-1156. |
17 | Liu M, Shen Z J, Zhou S Y, et al. Gas-solid reaction induced particle collision and aggregation[J]. Combustion and Flame, 2022, 237: 111885. |
18 | Tedeschi S T, Stevens N I, Powers K, et al. Improving aerosol dispersion through processing and dissemination techniques[J]. KONA Powder and Particle Journal, 2009, 27: 217-227. |
19 | 田媛, 杨俊杰, 赖雪, 等. 二氧化硅微球颗粒解团聚研究[J]. 红外与激光工程, 2015, 44(11): 3336-3342. |
Tian Y, Yang J J, Lai X, et al. Study on de-agglomeration of the silica microsphere[J]. Infrared and Laser Engineering, 2015, 44(11): 3336-3342. | |
20 | Krzosa R, Makowski Ł, Orciuch W, et al. Population balance application in TiO2 particle deagglomeration process modeling[J]. Energies, 2021, 14(12): 3523. |
21 | 梅芳, 张庆红, 陆厚根. 气流分级“鱼钩效应”的研究[J]. 硅酸盐学报, 1996, 24(6): 616-621. |
Mei F, Zhang Q H, Lu H G. Study on the “fish hook effect” in air classifiers[J]. Journal of the Chinese Ceramic Society, 1996, 24(6): 616-621. | |
22 | Guizani R, Mhiri H, Bournot P. Effects of the geometry of fine powder outlet on pressure drop and separation performances for dynamic separators[J]. Powder Technology, 2017, 314: 599-607. |
23 | Sun Z P, Liu C Y, Yang G, et al. Orthogonal vortices characteristic, performance evaluation and classification mechanism of a horizontal classifier with three rotor cages[J]. Powder Technology, 2022, 404: 117438. |
24 | Yu Y, Kong X, Ren C, et al. Effect of the rotor cage chassis on inner flow field of a turbo air classifier[J]. Materialwissenschaft Und Werkstofftechnik, 2021, 52(7): 772-780. |
25 | Li H, He Y Q, Yang J S, et al. Impact of particle density on the classification efficiency of the static air classifier in vertical spindle mill[J]. Physicochemical Problems of Mineral Processing, 2018, 55: 494-503. |
26 | Toprak N A, Altun O, Benzer A H. The effects of grinding aids on modelling of air classification of cement[J]. Construction and Building Materials, 2018, 160: 564-573. |
27 | Zhou Y H, Shen W. Numerical simulation of particle classification in new multi-product classifier[J]. Chemical Engineering Research and Design, 2022, 177: 484-492. |
28 | 任立波. 稠密颗粒两相流的CFD-DEM耦合并行算法及数值模拟[D]. 济南: 山东大学, 2015. |
Ren L B. A parallel CFD-DEM coupling model and numerical simulation of dense particulate two-phase flows[D]. Jinan: Shandong University, 2015. | |
29 | Zhou L Y, Ma H Q, Liu Z H, et al. Development and verification of coarse-grain CFD-DEM for nonspherical particles in a gas-solid fluidized bed[J]. AIChE Journal, 2022, 68(11): e17876. |
30 | Lin J J, Luo K, Wang S, et al. An augmented coarse-grained CFD-DEM approach for simulation of fluidized beds[J]. Advanced Powder Technology, 2020, 31(10): 4420-4427. |
31 | 任成. 涡流空气分级机流场分布规律及结构对比研究[D]. 北京: 北京化工大学, 2019. |
Ren C. Study on flow field distribution and structure comparison of turbo air classifier[D]. Beijing: Beijing University of Chemical Technology, 2019. | |
32 | 武树波. 涡流空气分级机颗粒分离过程数学模拟及双层撒料盘设计[D]. 北京: 北京化工大学, 2017. |
Wu S B. Mathematical simulation of particles separation process and design of double layer spreading plate of turbo air classifier[D]. Beijing: Beijing University of Chemical Technology, 2017. | |
33 | Liu H X, Yang F X, Tan H Z, et al. Experimental and numerical investigation on the structure characteristics of vortex generators affecting particle agglomeration[J]. Powder Technology, 2020, 362: 805-816. |
34 | Victoria-Camacho J A, DeLaCruz-Araujo R A, Kretzschmar I, et al. Self-assembly of magnetic colloids with radially shifted dipoles[J]. Soft Matter, 2020, 16(10): 2460-2472. |
35 | Liu W, Jiang W, Zhang H, et al. DEM simulations of spherical particle-particle collisions[J]. The Canadian Journal of Chemical Engineering, 2021, 101(2): 984-995. |
36 | Ma G G, Sun Z J, Ma H, et al. Calibration of contact parameters for moist bulk of shotcrete based on EDEM[J]. Advances in Materials Science and Engineering, 2022, 2022: 1-14. |
37 | Capece M, Davé R N, Bilgili E. A pseudo-coupled DEM-non-linear PBM approach for simulating the evolution of particle size during dry milling[J]. Powder Technology, 2018, 323: 374-384. |
38 | Dollimore D, Pearce J. Changes in surface free energy for the adsorption of nitrogen on porous powders of alumina and silica coated with manganese oxides[J]. Surface Technology, 1980, 10(2): 123-131. |
39 | Chu K W, Yu A B. Numerical simulation of complex particle-fluid flows[J]. Powder Technology, 2008, 179(3): 104-114. |
40 | Bharadwaj R, Ketterhagen W R, Hancock B C. Discrete element simulation study of a Freeman powder rheometer[J]. Chemical Engineering Science, 2010, 65(21): 5747-5756. |
41 | 黄争灿. 超细颗粒物PM 0.1的涡聚并机理与效率研究[D]. 北京: 华北电力大学(北京), 2019. |
Huang Z C. Study on vortex coalescence mechanism and efficiency of ultrafine particulate PM 0.1[D]. Beijing: North China Electric Power University, 2019. | |
42 | Cui Y, Sommerfeld M. The modelling of carrier-wall collision with drug particle detachment for dry powder inhaler applications[J]. Powder Technology, 2019, 344: 741-755. |
43 | Chang G, Egan G, McNeil J D, et al. Seasonal particle responses to near-bed shear stress in a shallow, wave- and current-driven environment[J]. Limnology and Oceanography Letters, 2022, 7(2): 175-183. |
44 | Weiler C. Generierung Leicht Dispergierbarer Inhalationspulver Mittels Sprühtrocknung[M]. Germany: Johannes Gutenberg-Universität Mainz, 2008: 26-32. |
[1] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[2] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[3] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[4] | Shaohua ZHOU, Feilong ZHAN, Guoliang DING, Hao ZHANG, Yanpo SHAO, Yantao LIU, Zheming GAO. Experimental study of flow noise in short tube throttle valve and noise reduction measures [J]. CIESC Journal, 2023, 74(S1): 113-121. |
[5] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[6] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[7] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[8] | Meisi CHEN, Weida CHEN, Xinyao LI, Shangyu LI, Youting WU, Feng ZHANG, Zhibing ZHANG. Advances in silicon-based ionic liquid microparticle enhanced gas capture and conversion [J]. CIESC Journal, 2023, 74(9): 3628-3639. |
[9] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[10] | Kaijie WEN, Li GUO, Zhaojie XIA, Jianhua CHEN. A rapid simulation method of gas-solid flow by coupling CFD and deep learning [J]. CIESC Journal, 2023, 74(9): 3775-3785. |
[11] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[12] | Lingding MENG, Ruqing CHONG, Feixue SUN, Zihui MENG, Wenfang LIU. Immobilization of carbonic anhydrase on modified polyethylene membrane and silica [J]. CIESC Journal, 2023, 74(8): 3472-3484. |
[13] | Chen HAN, Youmin SITU, Bin ZHU, Jianliang XU, Xiaolei GUO, Haifeng LIU. Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater [J]. CIESC Journal, 2023, 74(8): 3266-3278. |
[14] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[15] | Xiaosong CHENG, Yonggao YIN, Chunwen CHE. Performance comparison of different working pairs on a liquid desiccant dehumidification system with vacuum regeneration [J]. CIESC Journal, 2023, 74(8): 3494-3501. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 277
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 213
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||