CIESC Journal ›› 2019, Vol. 70 ›› Issue (11): 4123-4130.DOI: 10.11949/0438-1157.20190647
• Thermodynamics • Previous Articles Next Articles
Haiwen GE1,2(),Huaiyou WANG1,2,Min WANG1,2()
Received:
2019-06-10
Revised:
2019-08-22
Online:
2019-11-05
Published:
2019-11-05
Contact:
Min WANG
通讯作者:
王敏
作者简介:
戈海文(1984—),男,硕士,助理研究员,基金资助:
CLC Number:
Haiwen GE, Huaiyou WANG, Min WANG. Solubility and thermodynamics of lithium carbonate in sodium carbonate solution[J]. CIESC Journal, 2019, 70(11): 4123-4130.
戈海文, 王怀有, 王敏. 碳酸锂在碳酸钠溶液中的溶解度与热力学[J]. 化工学报, 2019, 70(11): 4123-4130.
Add to citation manager EndNote|Ris|BibTeX
(mol·kg-1) | (mol·kg-1) | ρ/(g·cm-3) | (mol·kg-1) | (mol·kg-1) | ρ/(g·cm-3) | (mol·kg-1) | (mol·kg-1) | ρ/(g·cm-3) |
---|---|---|---|---|---|---|---|---|
278.15 K | 308.15 K | 338.15 K | ||||||
0 0.0100 0.0203 0.0500 0.0699 0.1000 0.2869 0.4789 0.6521 0.8244 0.9938 1.1473 1.2808 1.4041 1.5801 1.6970 | 0.2122 0.2092 0.2066 0.2026 0.2007 0.1978 0.1887 0.1832 0.1795 0.1758 0.1723 0.1703 0.1689 0.1679 0.1667 0.1661 | 1.01319 1.01423 1.01502 1.01771 1.01939 1.02206 1.04224 1.05625 1.07596 1.09412 1.11250 1.12993 1.14522 1.16051 1.18297 1.19884 | 0 0.0100 0.0203 0.0500 0.0699 0.1000 0.2999 0.4697 0.6662 0.7975 0.9915 1.1504 1.2664 1.3503 1.4389 1.6734 | 0.1460 0.1448 0.1436 0.1416 0.1393 0.1377 0.1310 0.1287 0.1262 0.1251 0.1231 0.1217 0.1205 0.1198 0.1189 0.1167 | 1.00924 1.00981 1.01067 1.01260 1.01392 1.01614 1.03623 1.05277 1.07093 1.08600 1.10502 1.12462 1.13800 1.14748 1.15598 1.18412 | 0 0.0137 0.0225 0.0539 0.0691 0.0994 0.2808 0.3860 0.6659 0.8582 0.9944 1.0856 1.3309 1.4766 1.5863 1.7003 | 0.1118 0.1112 0.1102 0.1090 0.1076 0.1056 0.1036 0.1015 0.0998 0.0982 0.0974 0.0969 0.0965 0.0962 0.0959 0.0956 | 1.01021 1.01122 1.01190 1.01493 1.01629 1.01865 1.03587 1.04674 1.07783 1.09537 1.11162 1.12096 1.14863 1.16713 1.18202 1.19403 |
288.15 K | 318.15 K | 348.15 K | ||||||
0 0.0100 0.0203 0.0500 0.0699 0.1000 0.2928 0.4807 0.6544 0.8328 0.9784 1.1560 1.2875 1.4490 1.5967 1.6958 | 0.1844 0.1826 0.1819 0.1799 0.1786 0.1766 0.1696 0.1652 0.1621 0.1595 0.1578 0.1558 0.1544 0.1528 0.1511 0.1502 | 0.99972 1.00068 1.00105 1.00411 1.00636 1.00809 1.02755 1.04397 1.06560 1.08103 1.09713 1.11942 1.13652 1.15176 1.16646 1.18660 | 0 0.0100 0.0203 0.0500 0.0699 0.1000 0.2999 0.4653 0.6580 0.7968 0.9975 1.1458 1.2717 1.3928 1.4461 1.6589 | 0.1313 0.1306 0.1293 0.1266 0.1252 0.1232 0.1204 0.1166 0.1145 0.1124 0.1111 0.1102 0.1098 0.1088 0.1084 0.1076 | 1.01180 1.01233 1.01326 1.01559 1.01740 1.01982 1.03942 1.05491 1.07592 1.09010 1.11190 1.12842 1.14393 1.15889 1.16700 1.19354 | 0 0.0122 0.0208 0.0549 0.0737 0.1022 0.2971 0.4153 0.6759 0.8569 1.0001 1.1851 1.3570 1.4941 1.6229 1.7651 | 0.1047 0.1036 0.1026 0.1012 0.1003 0.0981 0.0956 0.0924 0.0906 0.0890 0.0881 0.0873 0.0866 0.0861 0.0855 0.0849 | 1.01272 1.01350 1.01428 1.01740 1.01935 1.02091 1.03921 1.04953 1.07591 1.09373 1.10803 1.12868 1.14703 1.16309 1.17915 1.19600 |
298.15 K | 328.15 K | 358.15 K | ||||||
0 0.0100 0.0203 0.0500 0.0699 0.1000 0.2999 0.4835 0.6689 0.8290 0.9987 1.1482 1.2904 1.4423 1.5847 1.7555 | 0.1643 0.1633 0.1618 0.1583 0.1560 0.1547 0.1484 0.1442 0.1408 0.1385 0.1361 0.1338 0.1327 0.1320 0.1312 0.1303 | 1.00455 1.00675 1.00740 1.00981 1.01393 1.01569 1.03510 1.05051 1.06890 1.08956 1.10256 1.12147 1.13787 1.15559 1.17257 1.19856 | 0 0.0159 0.0256 0.0511 0.0717 0.0975 0.2889 0.4551 0.6409 0.8074 0.9797 1.1256 1.2576 1.3728 1.5014 1.6558 | 0.1194 0.1184 0.1167 0.1157 0.1149 0.1126 0.1086 0.1071 0.1057 0.1047 0.1039 0.1033 0.1027 0.1025 0.1020 0.1016 | 1.01822 1.01927 1.02022 1.02325 1.02596 1.02867 1.05062 1.06883 1.08990 1.10916 1.13009 1.14910 1.16623 1.18240 1.20047 1.22193 | 0 0.0109 0.0199 0.0560 0.0723 0.1036 0.2932 0.4840 0.6559 0.8366 0.9871 1.1468 1.3385 1.4540 1.5811 1.7287 | 0.09532 0.09475 0.09337 0.09149 0.08955 0.08733 0.08459 0.08210 0.08052 0.07954 0.07892 0.07847 0.07802 0.07761 0.07730 0.07701 | 1.01048 1.01080 1.01143 1.01460 1.01586 1.01869 1.03549 1.05297 1.07208 1.08993 1.10670 1.12165 1.14762 1.15965 1.17548 1.19353 |
Table 1 Solubility and density of lithium carbonate in sodium carbonate solution at 278.15—358.15 K
(mol·kg-1) | (mol·kg-1) | ρ/(g·cm-3) | (mol·kg-1) | (mol·kg-1) | ρ/(g·cm-3) | (mol·kg-1) | (mol·kg-1) | ρ/(g·cm-3) |
---|---|---|---|---|---|---|---|---|
278.15 K | 308.15 K | 338.15 K | ||||||
0 0.0100 0.0203 0.0500 0.0699 0.1000 0.2869 0.4789 0.6521 0.8244 0.9938 1.1473 1.2808 1.4041 1.5801 1.6970 | 0.2122 0.2092 0.2066 0.2026 0.2007 0.1978 0.1887 0.1832 0.1795 0.1758 0.1723 0.1703 0.1689 0.1679 0.1667 0.1661 | 1.01319 1.01423 1.01502 1.01771 1.01939 1.02206 1.04224 1.05625 1.07596 1.09412 1.11250 1.12993 1.14522 1.16051 1.18297 1.19884 | 0 0.0100 0.0203 0.0500 0.0699 0.1000 0.2999 0.4697 0.6662 0.7975 0.9915 1.1504 1.2664 1.3503 1.4389 1.6734 | 0.1460 0.1448 0.1436 0.1416 0.1393 0.1377 0.1310 0.1287 0.1262 0.1251 0.1231 0.1217 0.1205 0.1198 0.1189 0.1167 | 1.00924 1.00981 1.01067 1.01260 1.01392 1.01614 1.03623 1.05277 1.07093 1.08600 1.10502 1.12462 1.13800 1.14748 1.15598 1.18412 | 0 0.0137 0.0225 0.0539 0.0691 0.0994 0.2808 0.3860 0.6659 0.8582 0.9944 1.0856 1.3309 1.4766 1.5863 1.7003 | 0.1118 0.1112 0.1102 0.1090 0.1076 0.1056 0.1036 0.1015 0.0998 0.0982 0.0974 0.0969 0.0965 0.0962 0.0959 0.0956 | 1.01021 1.01122 1.01190 1.01493 1.01629 1.01865 1.03587 1.04674 1.07783 1.09537 1.11162 1.12096 1.14863 1.16713 1.18202 1.19403 |
288.15 K | 318.15 K | 348.15 K | ||||||
0 0.0100 0.0203 0.0500 0.0699 0.1000 0.2928 0.4807 0.6544 0.8328 0.9784 1.1560 1.2875 1.4490 1.5967 1.6958 | 0.1844 0.1826 0.1819 0.1799 0.1786 0.1766 0.1696 0.1652 0.1621 0.1595 0.1578 0.1558 0.1544 0.1528 0.1511 0.1502 | 0.99972 1.00068 1.00105 1.00411 1.00636 1.00809 1.02755 1.04397 1.06560 1.08103 1.09713 1.11942 1.13652 1.15176 1.16646 1.18660 | 0 0.0100 0.0203 0.0500 0.0699 0.1000 0.2999 0.4653 0.6580 0.7968 0.9975 1.1458 1.2717 1.3928 1.4461 1.6589 | 0.1313 0.1306 0.1293 0.1266 0.1252 0.1232 0.1204 0.1166 0.1145 0.1124 0.1111 0.1102 0.1098 0.1088 0.1084 0.1076 | 1.01180 1.01233 1.01326 1.01559 1.01740 1.01982 1.03942 1.05491 1.07592 1.09010 1.11190 1.12842 1.14393 1.15889 1.16700 1.19354 | 0 0.0122 0.0208 0.0549 0.0737 0.1022 0.2971 0.4153 0.6759 0.8569 1.0001 1.1851 1.3570 1.4941 1.6229 1.7651 | 0.1047 0.1036 0.1026 0.1012 0.1003 0.0981 0.0956 0.0924 0.0906 0.0890 0.0881 0.0873 0.0866 0.0861 0.0855 0.0849 | 1.01272 1.01350 1.01428 1.01740 1.01935 1.02091 1.03921 1.04953 1.07591 1.09373 1.10803 1.12868 1.14703 1.16309 1.17915 1.19600 |
298.15 K | 328.15 K | 358.15 K | ||||||
0 0.0100 0.0203 0.0500 0.0699 0.1000 0.2999 0.4835 0.6689 0.8290 0.9987 1.1482 1.2904 1.4423 1.5847 1.7555 | 0.1643 0.1633 0.1618 0.1583 0.1560 0.1547 0.1484 0.1442 0.1408 0.1385 0.1361 0.1338 0.1327 0.1320 0.1312 0.1303 | 1.00455 1.00675 1.00740 1.00981 1.01393 1.01569 1.03510 1.05051 1.06890 1.08956 1.10256 1.12147 1.13787 1.15559 1.17257 1.19856 | 0 0.0159 0.0256 0.0511 0.0717 0.0975 0.2889 0.4551 0.6409 0.8074 0.9797 1.1256 1.2576 1.3728 1.5014 1.6558 | 0.1194 0.1184 0.1167 0.1157 0.1149 0.1126 0.1086 0.1071 0.1057 0.1047 0.1039 0.1033 0.1027 0.1025 0.1020 0.1016 | 1.01822 1.01927 1.02022 1.02325 1.02596 1.02867 1.05062 1.06883 1.08990 1.10916 1.13009 1.14910 1.16623 1.18240 1.20047 1.22193 | 0 0.0109 0.0199 0.0560 0.0723 0.1036 0.2932 0.4840 0.6559 0.8366 0.9871 1.1468 1.3385 1.4540 1.5811 1.7287 | 0.09532 0.09475 0.09337 0.09149 0.08955 0.08733 0.08459 0.08210 0.08052 0.07954 0.07892 0.07847 0.07802 0.07761 0.07730 0.07701 | 1.01048 1.01080 1.01143 1.01460 1.01586 1.01869 1.03549 1.05297 1.07208 1.08993 1.10670 1.12165 1.14762 1.15965 1.17548 1.19353 |
T/K | A | Ba | C | D | σ |
---|---|---|---|---|---|
278.15 288.15 298.15 308.15 318.15 328.15 338.15 348.15 358.15 | 0.56776 0.52846 0.51160 0.48690 0.46413 0.44307 0.42357 0.40545 0.38859 | 24.19 25.66 28.58 28.32 30.95 35.60 42.61 50.17 54.66 | -0.3154 -0.3636 -0.3621 -0.4050 -0.4273 -0.4465 -0.4499 -0.4438 -0.4551 | 0.02800 0.03444 0.03407 0.04128 0.04422 0.04593 0.04560 0.04510 0.04678 | 0.008213 0.009855 0.009934 0.008765 0.009765 0.009440 0.01059 0.01061 0.009062 |
Table 2 Model parameters and standard deviation of extended Debye-Hückel model at different temperatures
T/K | A | Ba | C | D | σ |
---|---|---|---|---|---|
278.15 288.15 298.15 308.15 318.15 328.15 338.15 348.15 358.15 | 0.56776 0.52846 0.51160 0.48690 0.46413 0.44307 0.42357 0.40545 0.38859 | 24.19 25.66 28.58 28.32 30.95 35.60 42.61 50.17 54.66 | -0.3154 -0.3636 -0.3621 -0.4050 -0.4273 -0.4465 -0.4499 -0.4438 -0.4551 | 0.02800 0.03444 0.03407 0.04128 0.04422 0.04593 0.04560 0.04510 0.04678 | 0.008213 0.009855 0.009934 0.008765 0.009765 0.009440 0.01059 0.01061 0.009062 |
T/K | a1 | b1 | a2 | b2 | σ |
---|---|---|---|---|---|
278.15 288.15 298.15 308.15 318.15 328.15 338.15 348.15 358.15 | 0.7326 0.3796 1.558 0.1412 0.7893 2.095 0.8836 1.597 1.529 | -1.461 -0.8787 -3.729 -0.1025 -1.730 -5.298 -1.852 -3.823 -3.545 | 0.05298 0.06969 0.03699 0.08134 0.06800 0.07174 0.08070 0.06645 0.06883 | 0.03858 0.02718 0.04579 0.01922 0.03088 0.03559 0.02107 0.02659 0.0281 | 0.9615×10-3 1.894×10-3 1.479×10-3 0.7667×10-3 0.6910×10-3 0.5967×10-3 0.8899×10-3 0.5291×10-3 0.8378×10-3 |
Table 3 Model parameters and standard deviation of Connaughton equation at different temperatures
T/K | a1 | b1 | a2 | b2 | σ |
---|---|---|---|---|---|
278.15 288.15 298.15 308.15 318.15 328.15 338.15 348.15 358.15 | 0.7326 0.3796 1.558 0.1412 0.7893 2.095 0.8836 1.597 1.529 | -1.461 -0.8787 -3.729 -0.1025 -1.730 -5.298 -1.852 -3.823 -3.545 | 0.05298 0.06969 0.03699 0.08134 0.06800 0.07174 0.08070 0.06645 0.06883 | 0.03858 0.02718 0.04579 0.01922 0.03088 0.03559 0.02107 0.02659 0.0281 | 0.9615×10-3 1.894×10-3 1.479×10-3 0.7667×10-3 0.6910×10-3 0.5967×10-3 0.8899×10-3 0.5291×10-3 0.8378×10-3 |
1 | 李明慧, 郑绵平. 锂资源的分布及其开发利用[J]. 科技导报, 2003, (12): 38-41. |
LiM H, ZhengM P. Distribution of lithium resources and its development and utilization[J]. Science & Technology Review, 2003, (12): 38-41. | |
2 | 潘立玲, 朱建华, 李渝渝. 锂资源及其开发技术进展[J]. 矿产综合利用, 2002, (2): 28-32. |
PanL L, ZhuJ H, LiY Y. Lithium resources and the progress of their exploitation techniques[J]. Multipurpose Utilization of Mineral Resource, 2002, (2): 28-32. | |
3 | 汪镜亮. 卤水锂资源提锂现状[J]. 化工矿物与加工, 1999, (12): 1-5. |
WangJ L. The present status of lithium extraciton from Li-bearing brines[J]. Industrial Minerals & Processing, 1999, (12): 1-5. | |
4 | 马培华. 中国盐湖资源的开发利用与科技问题[J]. 地球科学进展, 2000, 15(4): 365-375. |
MaP H. Comprehensive utilization of salt lake resources[J]. Advance in Earth Sciences, 2000, 15(4): 365-375. | |
5 | 王宝才. 我国卤水锂资源及开发技术进展[J]. 化工矿物与加工, 2000, 29(10): 13-15. |
WangB C. Lithium-bearing brine resources status and its progress of development technology in China[J]. Industrial Minerals & Processing, 2000, 29(10): 13-15. | |
6 | 胡赞. 典型矿石提锂工艺介绍及经济效益分析[J]. 盐科学与化工, 2019, 48(3): 5-8. |
HuZ. Analysis of typical lithium extraction from mines and its economic benefit[J]. Journal of Salt Science and Chemical Industry, 2019, 48(3): 5-8. | |
7 | 孟广寿. 矿石提锂与盐湖卤水提锂将并存发展[J].世界有色金属, 2008, (2): 67-69. |
MengG S. Co-existence of extracting lithium from ores and salt lake brines[J]. World Nonferrous Metals, 2008, (2): 67-69. | |
8 | 陈亚, 廖婷, 陈白珍, 等. 纯碱压煮法从锂辉石中提取锂的研究[J]. 有色金属(冶炼部分), 2011, (9): 21-23. |
ChenY, LiaoT, ChenB Z, et al. Extraction of lithium from spodumene by sodium carbonate autoclave process[J]. Nonferrous Metals (Extractive Metallurgy), 2011, (9): 21-23. | |
9 | 游清治. 我国锂冶炼工艺的自主创新[J]. 新疆有色金属, 2010, 33(S2): 104-107. |
YouQ Z. Independent innovation of lithium smelting process in China[J]. Xinjiang Nonferrous Metals, 2010, 33(S2): 104-107. | |
10 | 杨晶晶, 秦身钧, 张健雅, 等. 锂提取方法研究进展与展望[J]. 化工矿物与加工, 2012, 41(6): 49-51. |
YangJ J, QinS J, ZhangJ Y, et al. Research and prospect on lithium extraction[J]. Industrial Minerals & Processing, 2012, 41(6): 49-51. | |
11 | 朱文龙, 黄万抚. 国内外锂矿物资源概况及其选矿工艺综述[J]. 现代矿业, 2010, 7: 1-4. |
ZhuW L, HuangW F. General situation of lithium mineral resources both at home and abroad and summary of its mineral processing technology[J]. Morden Mining, 2010, 7: 1-4. | |
12 | 王瑜, 倪颖, 孙雪婷, 等. 卤水锂资源提取技术中国专利分析[J]. 盐湖研究, 2018, 26(3): 82-87. |
WangY, NiY, SunX T, et al. Patent analysis of lithium extraction technology from brine[J]. Journal of Salt Lake Research, 2018, 26(3): 82-87. | |
13 | 朱加乾, 徐宝金, 宋学文, 等. 提锂技术进展[J]. 金属矿山, 2018, (8): 62-69. |
ZhuJ Q, XuB J, SongX W, et al. Process of extracting lithium technology[J]. Metal Mine, 2018, (8): 62-69. | |
14 | 罗阿敏, 程芳, 李辉谷, 等. 盐湖卤水提锂的研究进展[J]. 化工矿物与加工, 2018, 47(5): 66-72. |
LuoA M, ChengF, LiH G, et al. Research progress on lithium extraction from lake brine[J]. Industrial Minerals & Processing, 2018, 47(5): 66-72. | |
15 | 刘东帆, 孙淑英, 于建国. 盐湖卤水提锂技术研究与发展[J]. 化工学报, 2018, 69(1): 141-155. |
LiuD F, SunS Y, YuJ G. Research and development on technique of lithium recovery from salt lake brine[J]. CIESC Journal, 2018, 69(1): 141-155. | |
16 | 赵晓昱. 海卤水提锂新技术研究现状及展望[J]. 高校化学工程学报, 2017, 31(3): 497-508. |
ZhaoX Y. Review on new techniques for lithium extraction from seawater and brine[J]. Journal of Chemical Engineering of Chinese Universities, 2017, 31(3): 497-508. | |
17 | 陈延成, 钱作华, 李博昀. 中瑞合作利用“许氏法”开发盐湖卤水中锂资源[J]. 化工矿产地质, 1998, 20(3): 49-50. |
ChenY C, QinZ H, LiB Y. Sino-Swiss cooperation to tap with “hsu technique” the lithium resource from the salt lakes in Qinghai province of China[J]. Geology of Chemical Minerals, 1998, 20(3): 49-50. | |
18 | 宋昌斌, 李润超. 碳酸锂在水中的溶解度和超溶解度的测定及热力学分析[J]. 化工进展, 2016, 35(8): 2350-2354. |
SongC B, LiR C. Measurement and thermodynamic analysis of the solubility and supersolubility of lithium carbonate in water[J]. Chemical Industry and Engineering Progress, 2016, 35(8): 2350-2354. | |
19 | WangH Y, DuB, WangM. Study of the solubility, supersolubility and metastable zone width of Li2CO3 in the LiCl-NaCl-KCl-Na2SO4 system from 293.15 to 353.15 K[J]. Journal of Chemical & Engineering Data, 2018, 63(5): 1429-1434. |
20 | 中国科学院青海盐湖研究所. 卤水和盐的分析方法[M]. 2版. 北京: 科学出版社, 1988: 59-61. |
Qinghai Institute of Salt Lakes, Chinese Academy of Sciences. Analysis Methods For Brines and Salts[M]. 2nd ed. Beijing: Science Press, 1988: 59-61. | |
21 | 黄子卿.电解质溶液理论导论[M]. 北京: 科学出版社, 1983: 47-50. |
HuangZ Q. Introduction to Electrolyte Solution Theory[M]. Beijing: Science Press, 1983: 47-50. | |
22 | 李以圭, 陆九芳. 电解质溶液理论[M]. 北京: 清华大学出版社, 2005: 7-13. |
LiY G, LuJ F. Electrolyte Solution Theories[M]. Beijing: Tsinghua University Press, 2005: 7-13. | |
23 | WilliamL M, RuthS, ErnestV J. Aqueous systems at high temperatures ⅩⅣ. Solubility and thermodynamic relationships for CaSO4 in NaCl-H2O solutions from 40 to 200℃, 0 to 4 molal NaCl[J]. Journal of Chemical & Engineering Data, 1964, 9(2): 1467-1468. |
24 | Williaml M, RuthS. Thermodynamics of calcium sulfate dihydrate in aqueous sodium chloride solutions, 0—110°[J]. Journal of Physical Chemistry, 1966, 70(12): 4015-4027. |
25 | HuangC, XieZ, XuJ, et al. Experimental and modeling studies on the solubility of d-pantolactone in four pure solvents and ethanol-water mixtures[J]. Journal of Chemical & Engineering Data, 2015, 60(3): 870-875. |
26 | 覃方红, 邱江源, 肖碧源, 等. 基于溶解热力学原理对纳米卤化银热力学性质的研究[J]. 高等学校化学学报, 2018, 39(10): 2214-2220. |
QinF H, QiuJ Y, XiaoB Y, et al. Investigation into the thermodynamic properties of nano-silver halides based on the principle of dissolution thermodynamics[J]. Chemical Journal of Chinese Universities, 2018, 39(10): 2214-2220. | |
27 | 张文娟, 张聪杰. 物质在水中溶解的热力学理论研究[J]. 化学教与学, 2018, (4): 25-27+91. |
ZhangW J, ZhangC J. Thermodynamic theoretical study on the dissolution of substances in water[J]. Chemistry Teaching and Learning, 2018, (4): 25-27+91. | |
28 | SousaJ, FonsecaI. Solubility of hydrofluorocarbons in halobenzene solvents[J]. Journal of Chemical & Engineering Data, 2014, 59(11): 3605-3609. |
29 | TianY, LiJ, WuB, et al. Determination and modeling of the solubility of 2,4-dimethoxybenzoic acid in six pure and isopropanol+ethyl acetate mixed organic solvents at temperatures from (288.15 to 323.15) K[J]. Journal of Chemical & Engineering Data, 2015, 60(4): 1098-1105. |
30 | ConnaughtonL M, HersheyJ P, MilleroF J. PVT properties of concentrated aqueous electrolytes(Ⅴ): Densities and apparent molal volumes of the four major sea salts from dilute solution to saturation and from 0 to 100℃[J]. Journal of Solution Chemistry, 1986, 15(12): 989-1002. |
[1] | Chao HU, Yuming DONG, Wei ZHANG, Hongling ZHANG, Peng ZHOU, Hongbin XU. Preparation of high-concentration positive electrolyte of vanadium redox flow battery by activating vanadium pentoxide with highly concentrated sulfuric acid [J]. CIESC Journal, 2023, 74(S1): 338-345. |
[2] | Xudong YU, Qi LI, Niancu CHEN, Li DU, Siying REN, Ying ZENG. Phase equilibria and calculation of aqueous ternary system KCl + CaCl2 + H2O at 298.2, 323.2, and 348.2 K [J]. CIESC Journal, 2023, 74(8): 3256-3265. |
[3] | Ke CHEN, Li DU, Ying ZENG, Siying REN, Xudong YU. Phase equilibria and calculation of quaternary system LiCl+MgCl2+CaCl2+H2O at 323.2 K [J]. CIESC Journal, 2023, 74(5): 1896-1903. |
[4] | Wenting CHENG, Jie LI, Li XU, Fangqin CHENG, Guoji LIU. Experiment and prediction for the solubility of AlCl3·6H2O in FeCl3, CaCl2, KCl and KCl-FeCl3 solutions [J]. CIESC Journal, 2023, 74(2): 642-652. |
[5] | Yuxin REN, Runfeng XU, Wanying WANG, Pengzhong CHEN, Xiaojun PENG. Synthesis and stability study of anthraquinone dyes for color photoresist [J]. CIESC Journal, 2022, 73(5): 2251-2261. |
[6] | Haiqing YIN, Yiming MA, Xuxing WAN, Weibing DONG, Yulong ZHANG, Songgu WU. Research of lithium carbonate three-phase reactive crystallization process [J]. CIESC Journal, 2022, 73(3): 1207-1220. |
[7] |
Siying REN, Xudong YU, Jun LUO, Xia FENG, Zhixing ZHAO, Zhihao YAO.
Phase equilibria of aqueous quaternary system Li+, K+, |
[8] | Xueping ZHANG, Ruizhi CUI, Shihua SANG. Experiment and calculation of phase equilibrium in ternary systems NaBr-CaBr2-H2O and KBr-CaBr2-H2O at 273.15 K [J]. CIESC Journal, 2021, 72(9): 4479-4486. |
[9] | Shengzheng GUO, Songgu WU, Xin SU, Wei GAO, Zhiping NIU, Junbo GONG. Determination of solubility and metastable zone width of rebaudioside A and study on its crystallization process [J]. CIESC Journal, 2021, 72(8): 3997-4008. |
[10] | LI Dan, SUN Shuaiqi, ZHANG Tao, ZHAO Yihui, MENG Lingzong, GUO Yafei, DENG Tianlong. Pitzer thermodynamic model of the system HCl-NaCl-CaCl2-H3BO3-H2O at 298.15 K and its application [J]. CIESC Journal, 2021, 72(6): 3160-3169. |
[11] | LUO Jun, WANG Lin, HUANG Qin, REN Siying, YU Xudong, ZENG Ying. Phase equilibria for ternary system CsCl-PEG8000-H2O at 288.2, 298.2 and 308.2 K [J]. CIESC Journal, 2021, 72(6): 3140-3148. |
[12] | HUANG Qin, YU Xudong, LI Maolan, ZHENG Hong, ZENG Ying. Experimental and thermodynamic simulation for ternary systems KCl+PEG10000/20000+ H2O at 308.2 K [J]. CIESC Journal, 2021, 72(4): 1895-1905. |
[13] | Daqun CAO,Yan JIN,Hang CHEN,Jianguo YU. Phase equilibria determination and solubility calculation of the quaternary system CaCl2-SrCl2-BaCl2-H2O at 338.15 K [J]. CIESC Journal, 2021, 72(10): 5028-5039. |
[14] | Yi GAO, Yahui CAO, Jieping FAN. Study on crystallization separation of ursolic acid and oleanolic acid in ionic liquid [J]. CIESC Journal, 2020, 71(8): 3633-3643. |
[15] | Ying ZENG, Peijun CHEN, Xudong YU. Phase equilibria for quaternary system Rb+, Cs+, Mg2+ // SO42- - H2O at 298.2 K [J]. CIESC Journal, 2020, 71(8): 3460-3468. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||