CIESC Journal ›› 2020, Vol. 71 ›› Issue (S1): 461-470.DOI: 10.11949/0438-1157.20190670
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Zhiqiang LI1(),Na LYU1,Lanying JIANG1,2()
Received:
2019-06-17
Revised:
2019-10-09
Online:
2020-04-25
Published:
2020-04-25
Contact:
Lanying JIANG
通讯作者:
蒋兰英
作者简介:
李志强(1990—),男,硕士,CLC Number:
Zhiqiang LI, Na LYU, Lanying JIANG. Modification of commercial forward osmosis membranes and investigation on treatment of coking wastewater[J]. CIESC Journal, 2020, 71(S1): 461-470.
李志强, 吕娜, 蒋兰英. 商业正渗透膜的改性及其用于处理焦化废水的研究[J]. 化工学报, 2020, 71(S1): 461-470.
Add to citation manager EndNote|Ris|BibTeX
成分 | 浓度/(mg/L) |
---|---|
吲哚 | 50 |
吡啶 | 50 |
NH3-N | 80 |
COD | 146 |
Table 1 Composition of simulated coking wastewater(pH=7.5)
成分 | 浓度/(mg/L) |
---|---|
吲哚 | 50 |
吡啶 | 50 |
NH3-N | 80 |
COD | 146 |
样品 | A/(kg/(m2·h·bar)) | B/(kg/(m2·h)) | S/μm | R/% |
---|---|---|---|---|
PIP-0 | 7.64 | 0.264 | 882 | 87.2 |
PIP-2 | 5.43 | 0.071 | 1543 | 94.7 |
HTI | 0.36 | 0.0035 | 278 | 93.0 |
HTI-IP | 0.33 | 0.0011 | 581 | 98.0 |
Table 2 Test results of characteristic parameters of FO membrane before and after modification
样品 | A/(kg/(m2·h·bar)) | B/(kg/(m2·h)) | S/μm | R/% |
---|---|---|---|---|
PIP-0 | 7.64 | 0.264 | 882 | 87.2 |
PIP-2 | 5.43 | 0.071 | 1543 | 94.7 |
HTI | 0.36 | 0.0035 | 278 | 93.0 |
HTI-IP | 0.33 | 0.0011 | 581 | 98.0 |
1 | Li Y M, Gu G W, Zhao J F, et al. Treatment of coke-plant wastewater by biofilm systems for removal of organic compounds and nitrogen[J]. Chemosphere, 2003, 52(6): 997-1005. |
2 | Marañón E, Vázquez I, Rodríguez J. Treatment of coke wastewater in a sequential batch reactor (SBR) at pilot plant scale[J]. Bioresour. Technol., 2008, 99(10): 4192-4198. |
3 | Kim Y M, Park D, Lee D S, et al. Inhibitory effects of toxic compounds on nitrification process for cokes wastewater treatment[J]. Journal of Hazardous Materials, 2008, 152(3): 915-921. |
4 | 刘国新, 吴海珍, 孙胜利, 等.市政污泥接种焦化废水好氧降解能力及微生物群落演替的响应分析[J].环境科学, 2017, 38(9): 3807-3815. |
Liu G X, Wu H Z, Song S L, et al. Aerobic degradation and microbial community succession of coking wastewater with municipal sludge[J]. Environmental Science, 2017, 38(9): 3807-3815. | |
5 | Li Y M, Gu G W, Zhao J F, et al. Treatment of coke-plant wastewater by biofilm systems for removal of organic compounds and nitrogen[J]. Chemosphere, 2003, 52(6): 997-1005. |
6 | 潘霞霞, 李媛媛, 黄会静, 等.焦化废水中硫氰化物的生物降解及其与苯酚、氨氮的交互影响[J].化工学报, 2009, 60(12): 3089-3096. |
Pan X X, Li Y Y, Huang H J, et al. Biodegradation of thiocyanate and inhibitory interaction with phenol, ammonia in coking wastewater[J]. CIESC Journal, 2009, 60(12): 3089-3096. | |
7 | Jin X W, Li E C, Lu S G, et al. Coking wastewater treatment for industrial reuse purpose: combining biological processes with ultrafiltration, nanofiltration and reverse osmosis[J]. Journal of Environmental Sciences, 2013, 25(8): 1565-1574. |
8 | Bodzek M, Bohdziewicz J, Kowalska M. Immobilized enzyme membranes for phenol and cyanide decomposition[J]. Journal of Membrane Science, 1996, 113(2): 373-384. |
9 | Kowalska M, Bodzek M, Bohdziewicz J. Biodegradation of phenols and cyanides using membranes with immobilized microorganisms[J]. Process Biochemistry, 1998, 33(2): 189-197. |
10 | 曲余玲, 毛艳丽, 翟晓东.焦化废水深度处理技术及工艺现状[J].工业水处理, 2015, 35(1): 14-17. |
Qu Y L, Mao Y L, Zhai X D. Advanced treatment technology of coking wastewater and its present status[J]. Industrial Water Treatment, 2015, 35(1): 14-17. | |
11 | Kimura K, Oki Y. Efficient control of membrane fouling in MF by removal of biopolymers: comparison of various pretreatments[J]. Water Research, 2017, 115: 172-179. |
12 | Kimura K, Shikato K, Oki Y, et al. Surface water biopolymer fractionation for fouling mitigation in low-pressure membranes[J]. Journal of Membrane Science, 2018, 554: 83-89. |
13 | Zhao S, Zou L, Tang C Y, et al. Recent developments in forward osmosis: opportunities and challenges[J]. Journal of Membrane Science, 2012, 396(1): 1-21. |
14 | Cath T Y, Childress A E, Elimelech M. Forward osmosis: principles, applications, and recent developments[J]. Journal of Membrane Science, 2006, 281(1/2): 70-87. |
15 | Cornelissen E R, Harmsen D, Beerendonk E F, et al. The innovative osmotic membrane bioreactor (OMBR) for reuse of wastewater [J]. Water Science & Technology, 2011, 63(8): 1557-1565. |
16 | Achilli A, Cath T Y, Marchand E A, et al. The forward osmosis membrane bioreactor: a low fouling alternative to MBR processes[J]. Desalination, 2009, 239(1): 10-21. |
17 | Wang X, Chang V, Tang C. Osmotic membrane bioreactor (OMBR) technology for wastewater treatment and reclamation: advances, challenges, and prospects for the future[J]. Journal of Membrane Science, 2016, 504: 113-132. |
18 | Huang L, Lee D J. Membrane bioreactor: a mini review on recent R&D works[J]. Bioresource Technology, 2015, 194: 383-388. |
19 | Xiao D, Tang C Y, Zhang J, et al. Modeling salt accumulation in osmotic membrane bioreactors: implications for FO membrane selection and system operation[J]. Journal of Membrane Science, 2011, 366(1/2): 314-324. |
20 | Nguyen N C, Chen S S, Nguyen H T, et al. Innovative sponge-based moving bed-osmotic membrane bioreactor hybrid system using a new class of draw solution for municipal wastewater treatment[J]. Water Research, 2016, 91: 305-313. |
21 | Yuan B, Wang X, Tang C, et al. In situ observation of the growth of biofouling layer in osmotic membrane bioreactors by multiple fluorescence labeling and confocal laser scanning microscopy[J]. Water Research, 2015, 75: 188-200. |
22 | Li F, Cheng Q, Tian Q, et al. Biofouling behavior and performance of forward osmosis membranes with bioinspired surface modification in osmotic membrane bioreactor[J]. Bioresource Technology, 2016, 211: 751-758. |
23 | Israelachvili J N. Intermolecular and Surface Forces: with Applications to Colloidal and Biological Systems[M]. USA: Academic Press, 1985. |
24 | Xie M, Price W E, Long D N, et al. Effects of feed and draw solution temperature and transmembrane temperature difference on the rejection of trace organic contaminants by forward osmosis[J]. Journal of Membrane Science, 2013, 438(7): 57-64. |
25 | Song Y, Sun P, Henry L L, et al. Mechanisms of structure and performance controlled thin film composite membrane formation via interfacial polymerization process[J]. Journal of Membrane Science, 2005, 251(1/2): 67-79. |
26 | Chai G Y, Krantz W B. Formation and characterization of polyamide membranes via interfacial polymerization[J]. Journal of Membrane Science, 1994, 93(2): 175-192. |
27 | Chinpa W, Quémener D, Bèche E, et al. Preparation of poly(etherimide) based ultrafiltration membrane with low fouling property by surface modification with poly(ethylene glycol)[J]. Journal of Membrane Science, 2018, 365(1): 89-97. |
28 | Rastgar M, Bozorg A, Shakeri A. A novel dimensionally-controlled nano-pore forming template in forward osmosis membranes[J]. Environmental Science & Technology, 2018, 52(5): 2704–2716. |
29 | 王亚琴, 徐铜文, 王焕庭. 正渗透原理及分离传质过程浅析[J]. 化工学报, 2013, 64(1): 252-260. |
Wang Y Q, Xu T W, Wang H T. Forward osmosis membrane process and its mass transport mechanisms[J]. CIESC Journal, 2013, 64(1): 252-260. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||