CIESC Journal ›› 2022, Vol. 73 ›› Issue (5): 2174-2182.DOI: 10.11949/0438-1157.20220164
• Energy and environmental engineering • Previous Articles Next Articles
Received:
2022-02-07
Revised:
2022-03-17
Online:
2022-05-24
Published:
2022-05-05
Contact:
Hong QI
通讯作者:
漆虹
作者简介:
季超(1994—),男,博士研究生,基金资助:
CLC Number:
Chao JI, Wei LIU, Hong QI. Flue gas dehumidification through air cooling enhanced by hydrophobic ceramic membranes[J]. CIESC Journal, 2022, 73(5): 2174-2182.
季超, 刘炜, 漆虹. 基于空冷的疏水陶瓷膜冷凝器用于烟气脱湿过程强化的实验研究[J]. 化工学报, 2022, 73(5): 2174-2182.
1 | Wang Y H, Cao L H, Hu P F, et al. Model establishment and performance evaluation of a modified regenerative system for a 660 MW supercritical unit running at the IPT-setting mode[J]. Energy, 2019, 179: 890-915. |
2 | Gao D, Li Z H, Zhang H, et al. Moisture recovery from gas-fired boiler exhaust using membrane module array[J]. Journal of Cleaner Production, 2019, 231: 1110-1121. |
3 | Jia C H, Liu P, Li Z. Performance analysis of ceramic membrane tube modules for water and heat recovery in coal-fired power plants[J]. Journal of Cleaner Production, 2021, 306: 127237. |
4 | Chen H P, Zhou Y N, Cao S T, et al. Heat exchange and water recovery experiments of flue gas with using nanoporous ceramic membranes[J]. Applied Thermal Engineering, 2017, 110: 686-694. |
5 | Ma S C, Chai J, Jiao K L, et al. Environmental influence and countermeasures for high humidity flue gas discharging from power plants[J]. Renewable and Sustainable Energy Reviews, 2017, 73: 225-235. |
6 | 王琳, 刘广建, 陈海平. 燃煤电厂烟气湿烟羽消除技术[J]. 中国电力, 2019, 52(10): 162-170. |
Wang L, Liu G J, Chen H P. Wet plume removal technologies for coal-fired power plants[J]. Electric Power, 2019, 52(10): 162-170. | |
7 | Brunetti A, Macedonio F, Barbieri G, et al. Membrane condenser as emerging technology for water recovery and gas pre-treatment: current status and perspectives[J]. BMC Chemical Engineering, 2019, 1: 19. |
8 | 颜岩, 余波, 王浩, 等. 燃煤电厂湿烟羽治理技术研究进展[J]. 过程工程学报, 2020, 20(7): 745-756. |
Yan Y, Yu B, Wang H, et al. Research progress on wet plume control technology in coal-fired power plants[J]. The Chinese Journal of Process Engineering, 2020, 20(7): 745-756. | |
9 | 谭厚章, 刘兴, 王文慧, 等. 超低排放背景下烟气消白技术路线研究[J]. 洁净煤技术, 2019, 25(2): 38-44. |
Tan H Z, Liu X, Wang W H, et al. Research on wet flue gas plume elimination technology in the context of ultra low emission[J]. Clean Coal Technology, 2019, 25(2): 38-44. | |
10 | Xiong Y Y, Tan H Z, Wang Y B, et al. Pilot-scale study on water and latent heat recovery from flue gas using fluorine plastic heat exchangers[J]. Journal of Cleaner Production, 2017, 161: 1416-1422. |
11 | Wang Z Y, Zhang X Y, Han J F, et al. Waste heat and water recovery from natural gas boilers: parametric analysis and optimization of a flue-gas-driven open absorption system[J]. Energy Conversion and Management, 2017, 154: 526-537. |
12 | Zhang Z C, Wang W, Liu X, et al. Water recovery from flue gas using polyether block amide 2533/sulfonated poly(ether ether ketone) composite membrane[J]. Journal of Applied Polymer Science, 2021, 138(32): 50795. |
13 | Macedonio F, Frappa M, Brunetti A, et al. Recovery of water and contaminants from cooling tower plume[J]. Environmental Engineering Research, 2020, 25(2): 222-229. |
14 | Sijbesma H, Nymeijer K, van Marwijk R, et al. Flue gas dehydration using polymer membranes[J]. Journal of Membrane Science, 2008, 313(1/2): 263-276. |
15 | Macedonio F, Brunetti A, Barbieri G, et al. Membrane condenser configurations for water recovery from waste gases[J]. Separation and Purification Technology, 2017, 181: 60-68. |
16 | Wang D X, Bao A N, Kunc W, et al. Coal power plant flue gas waste heat and water recovery[J]. Applied Energy, 2012, 91(1): 341-348. |
17 | Bao A N, Wang D X, Lin C X. Nanoporous membrane tube condensing heat transfer enhancement study[J]. International Journal of Heat and Mass Transfer, 2015, 84: 456-462. |
18 | Kim J F, Drioli E. Transport membrane condenser heat exchangers to break the water-energy nexus—a critical review[J]. Membranes, 2020, 11(1): 12. |
19 | Li Z H, Zhang H, Chen H P, et al. Advances, challenges and perspectives of using transport membrane condenser to recover moisture and waste heat from flue gas[J]. Separation and Purification Technology, 2022, 285: 120331. |
20 | Wang T T, Yue M W, Qi H, et al. Transport membrane condenser for water and heat recovery from gaseous streams: performance evaluation[J]. Journal of Membrane Science, 2015, 484: 10-17. |
21 | Yue M W, Zhao S F, Feron P H M, et al. Multichannel tubular ceramic membrane for water and heat recovery from waste gas streams[J]. Industrial & Engineering Chemistry Research, 2016, 55(9): 2615-2622. |
22 | 孟庆莹, 曹语, 黄延召, 等. 过程参数对采用多孔陶瓷超滤膜回收烟气中余热和水性能的影响[J]. 化工学报, 2018, 69(6): 2519-2525. |
Meng Q Y, Cao Y, Huang Y Z, et al. Effects of process parameters on water and waste heat recovery from flue gas using ceramic ultrafiltration membranes[J]. CIESC Journal, 2018, 69(6): 2519-2525. | |
23 | 曹钦丰, 孟庆莹, 季超, 等. 多孔陶瓷外膜孔径对烟气水热回收性能的影响[J]. 膜科学与技术, 2021, 41(4): 102-109. |
Cao Q F, Meng Q Y, Ji C, et al. Effect of pore size of outer-coated ceramic membranes on water and heat recovery performance in flue gas[J]. Membrane Science and Technology, 2021, 41(4): 102-109. | |
24 | Ji C, Li L, Qi H. Improving heat transfer and water recovery performance in high-moisture flue gas condensation using silicon carbide membranes[J]. International Journal of Energy Research, 2021, 45(7): 10974-10988. |
25 | 曹语, 王乐, 季超, 等. 陶瓷膜冷凝器用于烟气脱白烟过程的中试研究[J]. 化工学报, 2019, 70(6): 2192-2201. |
Cao Y, Wang L, Ji C, et al. Pilot-scale application on dissipation of smoke plume from flue gas using ceramic membrane condensers[J]. CIESC Journal, 2019, 70(6): 2192-2201. | |
26 | Liao X W, Hall J W, Eyre N. Water use in China’s thermoelectric power sector[J]. Global Environmental Change, 2016, 41: 142-152. |
27 | Li Z H, Zhang H, Chen H P. Application of transport membrane condenser for recovering water in a coal-fired power plant: a pilot study[J]. Journal of Cleaner Production, 2020, 261: 121229. |
28 | Cheng C, Liang D H, Zhang Y T, et al. Pilot-scale study on flue gas moisture recovery in a coal-fired power plant[J]. Separation and Purification Technology, 2021, 254: 117254. |
29 | Teng D, An L S, Shen G Q, et al. Experimental study on a ceramic membrane condenser with air medium for water and waste heat recovery from flue gas[J]. Membranes, 2021, 11(9): 701. |
30 | Cao J Y, Pan J, Cui Z L, et al. Improving efficiency of PVDF membranes for recovering water from humidified gas streams through membrane condenser[J]. Chemical Engineering Science, 2019, 210: 115234. |
31 | 李秀秀, 魏逸彬, 谢子萱, 等. Al2O3和SiC微滤膜的疏水改性及其油固分离性能研究[J]. 化工学报, 2019, 70(7): 2737-2747. |
Li X X, Wei Y B, Xie Z X, et al. Hydrophobic modification of Al2O3 and SiC microfiltration membranes for oil-solid separation[J]. CIESC Journal, 2019, 70(7): 2737-2747. | |
32 | Bustamante J G, Rattner A S, Garimella S. Achieving near-water-cooled power plant performance with air-cooled condensers[J]. Applied Thermal Engineering, 2016, 105: 362-371. |
33 | Li Y S, Yin J, Wu H B, et al. High thermal conductivity in pressureless densified SiC ceramics with ultra-low contents of additives derived from novel boron-carbon sources[J]. Journal of the European Ceramic Society, 2014, 34(10): 2591-2595. |
34 | Cheng C, Zhang H, Chen H P. Experimental study on water recovery and SO2 permeability of ceramic membranes with different pore sizes[J]. International Journal of Energy Research, 2020, 44(8): 6313-6324. |
35 | 曹竞一, 汪朝晖, 汪效祖, 等. 导热增强型PVDF膜及其膜冷凝过程强化[J]. 膜科学与技术, 2020, 40(2): 75-81. |
Cao J Y, Wang Z H, Wang X Z, et al. Enhancing the thermal conductivity of poly(vinylidene fluoride) membranes[J]. Membrane Science and Technology, 2020, 40(2): 75-81. | |
36 | 徐雯, 程俊峰, 董长青, 等. 燃煤电厂有色烟羽治理政策和技术现状[J]. 电站系统工程, 2020, 36(1): 8-12, 24. |
Xu W, Cheng J F, Dong C Q, et al. Policy and technical status of colored plume control in coal-fired power plants[J]. Power System Engineering, 2020, 36(1): 8-12, 24. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 70
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 229
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||