CIESC Journal ›› 2022, Vol. 73 ›› Issue (5): 2270-2278.DOI: 10.11949/0438-1157.20211800
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Mengyu LI1(),Dongxiang WANG2,Xiaoyang ZHENG3,Guizhuan XU2,Chaojun DU4,Chun CHANG1()
Received:
2021-12-22
Revised:
2022-02-16
Online:
2022-05-24
Published:
2022-05-05
Contact:
Chun CHANG
李梦雨1(),王冬祥2,郑晓阳3,徐桂转2,杜朝军4,常春1()
通讯作者:
常春
作者简介:
李梦雨(1996—),女,硕士研究生,基金资助:
CLC Number:
Mengyu LI, Dongxiang WANG, Xiaoyang ZHENG, Guizhuan XU, Chaojun DU, Chun CHANG. Preparation and adsorption properties of crude glycerol bio-based polyurethane material[J]. CIESC Journal, 2022, 73(5): 2270-2278.
李梦雨, 王冬祥, 郑晓阳, 徐桂转, 杜朝军, 常春. 粗甘油生物基聚氨酯材料的制备及吸附性能研究[J]. 化工学报, 2022, 73(5): 2270-2278.
Add to citation manager EndNote|Ris|BibTeX
样品 | T5%/℃ | T50%/℃ | Tmax/℃ | 残炭率/% |
---|---|---|---|---|
PU-25 | 265 | 399 | 389 | 7.03 |
PU-MTS | 260 | 400 | 403 | 9.06 |
Table 1 TG analysis of PU-25 and PU-MTS
样品 | T5%/℃ | T50%/℃ | Tmax/℃ | 残炭率/% |
---|---|---|---|---|
PU-25 | 265 | 399 | 389 | 7.03 |
PU-MTS | 260 | 400 | 403 | 9.06 |
溶剂 | PU-25吸附量/ (g/g) | PU-MTS吸附量/ (g/g) | 提高比例/% |
---|---|---|---|
乙醇 | 15.1 | 16.7 | 10.60 |
甲醇 | 14.7 | 18.7 | 27.21 |
氯仿 | 40.9 | 45.2 | 10.51 |
二氯甲烷 | 43.7 | 44.9 | 2.75 |
丙酮 | 18.0 | 23.7 | 31.67 |
甲苯 | 19.2 | 24.3 | 26.56 |
大豆油 | 9.0 | 16.9 | 87.78 |
柴油 | 11.2 | 18.1 | 61.61 |
煤油 | 12.0 | 19.1 | 59.17 |
Table 2 Comparison of adsorption properties between PU-25 and PU-MTS
溶剂 | PU-25吸附量/ (g/g) | PU-MTS吸附量/ (g/g) | 提高比例/% |
---|---|---|---|
乙醇 | 15.1 | 16.7 | 10.60 |
甲醇 | 14.7 | 18.7 | 27.21 |
氯仿 | 40.9 | 45.2 | 10.51 |
二氯甲烷 | 43.7 | 44.9 | 2.75 |
丙酮 | 18.0 | 23.7 | 31.67 |
甲苯 | 19.2 | 24.3 | 26.56 |
大豆油 | 9.0 | 16.9 | 87.78 |
柴油 | 11.2 | 18.1 | 61.61 |
煤油 | 12.0 | 19.1 | 59.17 |
Fig.11 SEM images of PU-MTS after cyclic adsorption: (a)—(c) SEM images of PU-MTS at different magnification after 10 cycles; (d)—(f) SEM images of PU-MTS at different magnifications after 30 cycles; (g)—(i) SEM images of PU-MTS at different magnifications after 50 cycles
改性试剂 | 水接触角/(°) | 吸附溶剂 | 吸附性能/ (g/g) | 文献 |
---|---|---|---|---|
KH-570处理过的氧化石墨烯分散液 | 161 | 大豆油、柴油、泵油 | 35~39 | [ |
甲基三氯硅烷-正己烷 | 157 | 润滑油、豆油、汽油、原油、正辛烷、十二烷、癸烷 | 15~25 | [ |
纤维素纳米晶须的石墨烯悬浮液 | 152 | 丙酮、乙醇、乙二醇、橄榄油、大豆油、润滑油、甲苯 | 28~47 | [ |
凹凸棒石和十八烷基三氯硅烷 | 160 | 氯仿、正己烷、石油醚、柴油、甲苯、煤油、菜籽油 | 17~45 | [ |
碳纳米纤维的乙醇分散液 | 146 | 正己烷、庚烷、甲苯、二甲苯、汽油 | 26~50 | [ |
甲基三氯硅烷-正己烷 | 140 | 乙醇、甲醇、 丙酮、氯仿、二氯甲烷、甲苯、柴油、煤油、大豆油 | 16.67~45.15 | 本研究 |
Table.3 Comparison of adsorption properties of different modified foams
改性试剂 | 水接触角/(°) | 吸附溶剂 | 吸附性能/ (g/g) | 文献 |
---|---|---|---|---|
KH-570处理过的氧化石墨烯分散液 | 161 | 大豆油、柴油、泵油 | 35~39 | [ |
甲基三氯硅烷-正己烷 | 157 | 润滑油、豆油、汽油、原油、正辛烷、十二烷、癸烷 | 15~25 | [ |
纤维素纳米晶须的石墨烯悬浮液 | 152 | 丙酮、乙醇、乙二醇、橄榄油、大豆油、润滑油、甲苯 | 28~47 | [ |
凹凸棒石和十八烷基三氯硅烷 | 160 | 氯仿、正己烷、石油醚、柴油、甲苯、煤油、菜籽油 | 17~45 | [ |
碳纳米纤维的乙醇分散液 | 146 | 正己烷、庚烷、甲苯、二甲苯、汽油 | 26~50 | [ |
甲基三氯硅烷-正己烷 | 140 | 乙醇、甲醇、 丙酮、氯仿、二氯甲烷、甲苯、柴油、煤油、大豆油 | 16.67~45.15 | 本研究 |
1 | Hadji E M, Fu B, Abebe A, et al. Sponge-based materials for oil spill cleanups: a review[J]. Frontiers of Chemical Science and Engineering, 2020, 14(5): 749-762. |
2 | Zhang T, Li Z D, Lü Y F, et al. Recent progress and future prospects of oil-absorbing materials[J]. Chinese Journal of Chemical Engineering, 2019, 27(6): 1282-1295. |
3 | Wang X X, Peng G T, Chen M M, et al. Reduced graphene oxide composites and its real-life application potential for in-situ crude oil removal[J]. Chemosphere, 2020, 249: 126141. |
4 | Kong D P, He X, Khan F, et al. Small scale experiment study on burning characteristics for in-situ burning of crude oil on open water[J]. Journal of Loss Prevention in the Process Industries, 2019, 60: 46-52. |
5 | Hohl L, Knossalla M, Kraume M. Influence of dispersion conditions on phase separation in liquid multiphase systems[J]. Chemical Engineering Science, 2017, 171: 76-87. |
6 | Pourrezaei P, Drzewicz P, Wang Y N, et al. The impact of metallic coagulants on the removal of organic compounds from oil sands process-affected water[J]. Environmental Science & Technology, 2011, 45(19): 8452-8459. |
7 | Shi Y, Li S W, Zhang H Q, et al. Experimental studies on performances of flexible floating oil booms in coupled wave-current flow[J]. Applied Ocean Research, 2017, 69: 38-52. |
8 | Vieira A F, José R P R, Maria V G, et al. Development of hydrophobic polyurethane/castor oil biocomposites with agroindustrial residues for sorption of oils and organic solvents[J]. Journal of Colloid and Interface Science, 2021, 581: 442-454. |
9 | Luo Q, Hou D Y, Jiang D W, et al. Bioremediation of marine oil spills by immobilized oil-degrading bacteria and nutrition emulsion[J]. Biodegradation, 2021, 32(2): 165-177. |
10 | 孔令通. 聚丙烯酸酯类吸油树脂的合成及其在含油废水处理中的应用[D]. 北京: 北京化工大学, 2019. |
Kong L T. Synthesis of polyacrylate oil-absorption resin and its application in the treatment process of oily wastewater[D]. Beijing: Beijing University of Chemical Technology, 2019. | |
11 | 张书美. 新型三维多孔吸油材料的制备及其在油水分离中的应用[D]. 济南: 山东大学, 2020. |
Zhang S M. Preparation of a novel three-dimensional porous oil-absorbing material and its application in oil-water separation[D]. Jinan: Shandong University, 2020. | |
12 | Anonymous. US chemical profile: glycerine[J]. ICIS Chemical Business, 2020, 298(2): 97. |
13 | Qi X G, Zhang Y S, Chang C, et al. Thermal, mechanical, and morphological properties of rigid crude glycerol-based polyurethane foams reinforced with nanoclay and microcrystalline cellulose[J]. European Journal of Lipid Science and Technology, 2018, 120(5): 1700413. |
14 | Kosmela P, Hejna A, Formela K, et al. The study on application of biopolyols obtained by cellulose biomass liquefaction performed with crude glycerol for the synthesis of rigid polyurethane foams[J]. Journal of Polymers and the Environment, 2018, 26(6): 2546-2554. |
15 | Chang C, Liu L W, Li P, et al. Preparation of flame retardant polyurethane foam from crude glycerol based liquefaction of wheat straw[J]. Industrial Crops and Products, 2021, 160: 113098. |
16 | 戚小各, 何玉远, 常春, 等. 基于生物柴油副产物粗甘油的聚氨酯硬泡的制备[J]. 聚氨酯工业, 2018, 33(1): 27-30. |
Qi X G, He Y Y, Chang C, et al. Preparation of bio-based polyurethane foam based on crude glycerol from biodiesel[J]. Polyurethane Industry, 2018, 33(1): 27-30. | |
17 | 刘利威, 常春, 戚小各, 等. 粗甘油生物基聚氨酯泡沫的改性研究[J]. 高校化学工程学报, 2019, 33(2): 469-474. |
Liu L W, Chang C, Qi X G, et al. Modification of crude glycerol bio-based polyurethane foams[J]. Journal of Chemical Engineering of Chinese Universities, 2019, 33(2): 469-474. | |
18 | Zhao S J, Yin L, Zhou Q Q, et al. In situ self-assembly of zeolitic imidazolate frameworks on the surface of flexible polyurethane foam: towards for highly efficient oil spill cleanup and fire safety[J]. Applied Surface Science, 2020, 506: 144700. |
19 | 余若冰, 江莹. 超疏水泡沫吸油材料的制备及性能研究[J]. 信阳师范学院学报(自然科学版), 2019, 32(4): 621-625. |
Yu R B, Jiang Y. The preparation and property of superhydrophobic foam for oil absorption[J]. Journal of Xinyang Normal University(Natural Science Edition), 2019, 32(4): 621-625. | |
20 | Sun R Y, Yu N K, Zhao J, et al. Chemically stable superhydrophobic polyurethane sponge coated with ZnO/epoxy resin coating for effective oil/water separation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 611: 125850. |
21 | 吴文浩, 张海军, 贾全利. 疏水亲油材料研究进展[J]. 稀有金属材料与工程, 2021, 50(4): 1471-1481. |
Wu W H, Zhang H J, Jia Q L. Progress in hydrophobic-oleophilic materials[J]. Rare Metal Materials and Engineering, 2021, 50(4): 1471-1481. | |
22 | Baig N, Alghunaimi F I, Dossary H S, et al. Superhydrophobic and superoleophilic carbon nanofiber grafted polyurethane for oil-water separation[J]. Process Safety and Environmental Protection, 2019, 123: 327-334. |
23 | Xiong S, Zhong Z X, Wang Y. Direct silanization of polyurethane foams for efficient selective absorption of oil from water[J]. AIChE Journal, 2017, 63(6): 2232-2240. |
24 | Pan Y, Zhan J, Pan H F, et al. A facile method to fabricate superoleophilic and hydrophobic polyurethane foam for oil-water separation[J]. Materials Letters, 2015, 159: 345-348. |
25 | Verdolotti L, Lavorgna M, Lamanna R, et al. Polyurethane-silica hybrid foam by sol-gel approach: chemical and functional properties[J]. Polymer, 2015, 56: 20-28. |
26 | 程千会, 刘长松, 刘盛友. 超疏水聚硅氧烷/聚氨酯海绵的制备及其油水分离特性的研究[J]. 材料研究与应用, 2017, 11(4): 230-235. |
Cheng Q H, Liu C S, Liu S Y. Fabrication of superhydrophobic polysiloxane/polyurethane sponge and its oil-water separation[J]. Materials Research and Application, 2017, 11(4): 230-235. | |
27 | Shirgholami M A, Shateri-Khalilabad M, Yazdanshenas M E. Effect of reaction duration in the formation of superhydrophobic polymethylsilsesquioxane nanostructures on cotton fabric[J]. Textile Research Journal, 2013, 83(1): 100-110. |
28 | 祝青. 超疏水聚氨酯(PU)海绵的制备及油水分离特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2014. |
Zhu Q. Fabrication and oil-water separation performance of superhydrophobic polyurethane (PU) sponges[D]. Harbin: Harbin Institute of Technology, 2014. | |
29 | Zhang B, Liu H, Han J. RETRACTED: aluminum phosphate microcapsule flame retardants for flexible polyurethane foams[J]. Journal of Physics and Chemistry of Solids, 2018, 115: 199-207. |
30 | Fang Z, Qiu C H, Ji D, et al. Development of high-performance biodegradable rigid polyurethane foams using full modified soy-based polyols[J]. Journal of Agricultural and Food Chemistry, 2019, 67(8): 2220-2226. |
31 | Zhu Q, Chu Y, Wang Z K, et al. Robust superhydrophobic polyurethane sponge as a highly reusable oil-absorption material[J]. Journal of Materials Chemistry A, 2013, 1(17): 5386-5393. |
32 | Li B B, Liu X Y, Zhang X Y, et al. Oil-absorbent polyurethane sponge coated with KH-570-modified graphene[J]. Journal of Applied Polymer Science, 2015, 132(16): 41821. |
33 | Zhang X T, Liu D Y, Ma Y L, et al. Super-hydrophobic graphene coated polyurethane (GN@PU) sponge with great oil-water separation performance[J]. Applied Surface Science, 2017, 422: 116-124. |
34 | Li J, Xu C C, Zhang Y, et al. Robust superhydrophobic attapulgite coated polyurethane sponge for efficient immiscible oil/water mixture and emulsion separation[J]. Journal of Materials Chemistry A, 2016, 4(40): 15546-15553. |
[1] | Jiali ZHENG, Zhihui LI, Xinqiang ZHAO, Yanji WANG. Kinetics of ionic liquid catalyzed synthesis of 2-cyanofuran [J]. CIESC Journal, 2023, 74(9): 3708-3715. |
[2] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[3] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[4] | Meibo XING, Zhongtian ZHANG, Dongliang JING, Hongfa ZHANG. Enhanced phase change energy storage/release properties by combining porous materials and water-based carbon nanotube under magnetic regulation [J]. CIESC Journal, 2023, 74(7): 3093-3102. |
[5] | Jie WANG, Xiaolin QIU, Ye ZHAO, Xinyang LIU, Zhongqiang HAN, Yong XU, Wenhan JIANG. Preparation and properties of polyelectrolyte electrostatic deposition modified PHBV antioxidant films [J]. CIESC Journal, 2023, 74(7): 3068-3078. |
[6] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
[7] | Maolin DONG, Lidong CHEN, Liulian HUANG, Weibing WU, Hongqi DAI, Huiyang BIAN. Research progress in preparation of lignonanocellulose by acid hydrotropes and their functional applications [J]. CIESC Journal, 2023, 74(6): 2281-2295. |
[8] | Zhen LI, Bo ZHANG, Liwei WANG. Development and properties of PEG-EG solid-solid phase change materials [J]. CIESC Journal, 2023, 74(6): 2680-2688. |
[9] | Zefeng GE, Yuqing WU, Mingxun ZENG, Zhenting ZHA, Yuna MA, Zenghui HOU, Huiyan ZHANG. Effect of ash chemical components on biomass gasification properties [J]. CIESC Journal, 2023, 74(5): 2136-2146. |
[10] | Shuai WANG, Fukai YANG, Xinyu XU. Preparation and characterization of flame retardant bio-based polyols polyurethane foam [J]. CIESC Journal, 2023, 74(3): 1399-1408. |
[11] | Lingxin ZU, Rongting HU, Xin LI, Yudao CHEN, Guanglin CHEN. Carbon release products and denitrification bioavailability from chemical components of woody biomass [J]. CIESC Journal, 2023, 74(3): 1332-1342. |
[12] | Haiqin LIU, Bowen LI, Zhe LING, Liang LIU, Juan YU, Yimin FAN, Qiang YONG. Facile preparation and properties of chemically modified galactomannan films via mild hydroxy-alkyne click reaction [J]. CIESC Journal, 2023, 74(3): 1370-1378. |
[13] | Jieyuan ZHENG, Xianwei ZHANG, Jintao WAN, Hong FAN. Synthesis and curing kinetic analysis of eugenol-based siloxane epoxy resin [J]. CIESC Journal, 2023, 74(2): 924-932. |
[14] | Huanjuan ZHAO, Jing LIU, Donglei ZHOU, Min LIN. Inhibition effect of porous materials on hydrogen detonation [J]. CIESC Journal, 2023, 74(2): 968-976. |
[15] | Jianxin CHEN, Ruijie ZHU, Nan SHENG, Chunyu ZHU, Zhonghao RAO. Preparation of cellulose-derived biomass porous carbon and its supercapacitor performance [J]. CIESC Journal, 2022, 73(9): 4194-4206. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||