CIESC Journal ›› 2019, Vol. 70 ›› Issue (12): 4898-4906.DOI: 10.11949/0438-1157.20190711
• Process safety • Previous Articles
Fang WANG(),Weiguo LIN(),Xinyu CHANG,Xianbo QIU
Received:
2019-06-24
Revised:
2019-08-20
Online:
2019-12-05
Published:
2019-12-05
Contact:
Weiguo LIN
通讯作者:
林伟国
作者简介:
王芳(1989—),女,博士研究生,基金资助:
CLC Number:
Fang WANG, Weiguo LIN, Xinyu CHANG, Xianbo QIU. Slow leak detection method based on signal enhancement[J]. CIESC Journal, 2019, 70(12): 4898-4906.
王芳, 林伟国, 常新禹, 邱宪波. 基于信号增强的缓慢泄漏检测方法[J]. 化工学报, 2019, 70(12): 4898-4906.
Add to citation manager EndNote|Ris|BibTeX
Fig.8 Time-domain waveforms of original pressure signal, compressed pressure signal, enhanced virtual acoustic signal and reconstructed virtual acoustic signal
管道参数 | 输水管道 | 石脑油管道 |
---|---|---|
管道总长/km | 62 | 15.511 |
管道直径/mm | 914 | 150 |
管壁厚度/mm | 23.8 | 6 |
输送量/(m3/h) | 1500~3100 | 不详 |
上游参考压力/MPa | 5 | 2.18 |
下游参考压力/MPa | 2 | 0.48 |
声波速度/(m/s) | 1323 | 1055 |
压力变送器型号/参数 | 霍尼韦尔STG74L/0.065% | 浙大中控SKGW04V5/0.065% |
声波信号变送器型号/参数 | 自主研发/参见1.2节 | |
模拟泄漏点位置(距离上游)/ km | 43.990 | 9.476 |
信号采样频率/ Hz | 100 | 50 |
Table 1 Pipeline parameters
管道参数 | 输水管道 | 石脑油管道 |
---|---|---|
管道总长/km | 62 | 15.511 |
管道直径/mm | 914 | 150 |
管壁厚度/mm | 23.8 | 6 |
输送量/(m3/h) | 1500~3100 | 不详 |
上游参考压力/MPa | 5 | 2.18 |
下游参考压力/MPa | 2 | 0.48 |
声波速度/(m/s) | 1323 | 1055 |
压力变送器型号/参数 | 霍尼韦尔STG74L/0.065% | 浙大中控SKGW04V5/0.065% |
声波信号变送器型号/参数 | 自主研发/参见1.2节 | |
模拟泄漏点位置(距离上游)/ km | 43.990 | 9.476 |
信号采样频率/ Hz | 100 | 50 |
泄漏类型 | 样本 | 插值前 | 线性插值 | 三次样条插值 | 立方插值 | 临近插值 |
---|---|---|---|---|---|---|
缓慢 | 1 | 33.621 | 43.471 | 43.471 | 43.471 | 43.655 |
2 | 34.557 | 43.223 | 43.223 | 43.223 | 43.212 | |
突发 | 3 | 8.399 | 9.665 | 9.665 | 9.665 | 9.665 |
4 | 8.367 | 9.570 | 9.570 | 9.570 | 9.570 |
Table 2 Location results of cross-correlation location method combined with interpolation method/km
泄漏类型 | 样本 | 插值前 | 线性插值 | 三次样条插值 | 立方插值 | 临近插值 |
---|---|---|---|---|---|---|
缓慢 | 1 | 33.621 | 43.471 | 43.471 | 43.471 | 43.655 |
2 | 34.557 | 43.223 | 43.223 | 43.223 | 43.212 | |
突发 | 3 | 8.399 | 9.665 | 9.665 | 9.665 | 9.665 |
4 | 8.367 | 9.570 | 9.570 | 9.570 | 9.570 |
检测方法 | 输水管道(缓慢) | 石脑油输送管道(突发) | ||||||
---|---|---|---|---|---|---|---|---|
漏报次数/泄漏样本总数 | 误报次数/样本总数 | 最大定位误差/km | 诊断时间/s | 漏报次数/泄漏样本总数 | 误报次数/样本总数 | 最大定位误差/km | 诊断时间/s | |
本文方法 | 0/3 | 1/14400 | 0.53 | 0.87 | 0/15 | 0/14400 | 0.094 | 0.21 |
负压波法 | 1/3 | 162/14400 | 4.05 | 1.3 | 2/15 | 72/14400 | 1.487 | 0.56 |
声波法 | 3/3 | 523/14400 | — | 0.65 | 0/15 | 0/14400 | 0.084 | 0.04 |
Table 3 Comparison results of three leak detection methods
检测方法 | 输水管道(缓慢) | 石脑油输送管道(突发) | ||||||
---|---|---|---|---|---|---|---|---|
漏报次数/泄漏样本总数 | 误报次数/样本总数 | 最大定位误差/km | 诊断时间/s | 漏报次数/泄漏样本总数 | 误报次数/样本总数 | 最大定位误差/km | 诊断时间/s | |
本文方法 | 0/3 | 1/14400 | 0.53 | 0.87 | 0/15 | 0/14400 | 0.094 | 0.21 |
负压波法 | 1/3 | 162/14400 | 4.05 | 1.3 | 2/15 | 72/14400 | 1.487 | 0.56 |
声波法 | 3/3 | 523/14400 | — | 0.65 | 0/15 | 0/14400 | 0.084 | 0.04 |
1 | 李健, 陈世利, 黄新敬, 等. 长输油气管道泄漏监测与准实时检测技术综述[J]. 仪器仪表学报, 2016, 37(8): 1747-1760. |
Li J, Chen S L, Huang X J, et al. Review of leak monitoring and quasi real-time detection technologies for long gas & oil pipelines[J]. Chinese Journal of Scientific Instrument, 2016, 37(8): 1747-1760. | |
2 | 林伟国, 王晓东, 吴海燕, 等. 基于时域积分的泄漏声波信号增强方法[J]. 化工学报, 2016, 67(3): 797-804. |
Lin W G, Wang X D, Wu H Y, et al. Acoustic leak signal enhancement based on time-domain integration[J]. CIESC Journal, 2016, 67(3): 797-804. | |
3 | Liu C W, Li Y X, Fang L P, et al. New leak-localization approaches for gas pipelines using acoustic waves[J]. Measurement, 2019, 134: 54-65. |
4 | Zhang T T, Tan Y F, Zhang X D, et al. A novel hybrid technique for leak detection and location in straight pipelines[J]. Journal of Loss Prevention in the Process Industries, 2015, 35: 157-168. |
5 | 梁杰, 李玉星, 刘翠伟, 等. 埋地输气管道泄漏特性实验研究[J]. 化工学报, 2019, 70(4): 1635-1643. |
Liang J, Li Y X, Liu C W, et al. Experimental study on leakage characteristics of buried gas pipelines[J]. CIESC Journal, 2019, 70(4): 1635-1643. | |
6 | Sun J D, Xiao Q Y, Wen J T, et al. Natural gas pipeline small leak feature extraction and recognition based on LMD envelope spectrum entropy and SVM[J]. Measurement, 2014, 55: 434-443. |
7 | Arifin B M S, Li Z K, Shah S L, et al. A novel data-driven leak detection and localization algorithm using the Kantorovich distance[J]. Computers & Chemical Engineering, 2018, 108: 300-313. |
8 | Sun L, Chang N. Integrated-signal-based leak location method for liquid pipelines[J]. Journal of Loss Prevention in the Process Industries, 2014, 32: 311-318. |
9 | 孟令雅, 付俊涛, 李玉星, 等. 输气管道泄漏音波信号传播特性及预测模型[J]. 中国石油大学学报(自然科学版), 2013, 37(2): 124-129. |
Meng L Y, Fu J T, Li Y X, et al. Propagating characteristics of acoustic leak signal in natural gas pipeline and establishment of prediction model[J]. Journal of China University of Petroleum(Edition of Natural Science), 2013, 37 (2): 124-129. | |
10 | 刘翠伟, 敬华飞, 方丽萍, 等. 输气管道泄漏声波衰减模型的理论研究[J]. 振动与冲击, 2018, 37(20): 114-119. |
Liu C W, Jing H F, Fang L P, et al. A theoretical study on the attenuation model of leak acoustic waves for natural gas pipelines[J]. Journal of Vibration and Shock, 2018, 37(20): 114-119. | |
11 | Muggleton J M, Kalkowski M, Gao Y, et al. A theoretical study of the fundamental torsional wave in buried pipes for pipeline condition assessment and monitoring[J]. Journal of Sound and Vibration, 2015, 374: 155-171. |
12 | 赵利强, 王建林, 于涛, 等. 基于二代小波变换和多级假设检验的输油管道缓泄漏检测方法[J]. 石油学报, 2012, 33(5): 898-903. |
Zhao L Q, Wang J L, Yu T, et al. A detection method for slow leak of oil pipelines based on second generation wavelet transform and multistage hypothesis test[J]. Acta Petrolei Sinica, 2012, 33(5): 898-903. | |
13 | Liu J H, Zang D, Liu C, et al. A leak detection method for oil pipeline based on Markov feature and two-stage decision scheme[J]. Measurement, 2019, 138: 433-445. |
14 | Hu J Q, Zhang L B, Liang W. Detection of small leakage from long transportation pipeline with complex noise[J]. Journal of Loss Prevention in the Process Industries, 2011, 24(4): 449-457. |
15 | Ostapkowicz P. Leak detection from liquid transmission pipelines using improved pressure wave technique[J]. Eksploatacja i Niezawodnosc - Maintenance and Reliability, 2014, 16 (1): 9-16. |
16 | Abdulshaheed A, Mustapha F, Ghavamian A. A pressure-based method for monitoring leaks in a pipe distribution system: a review[J]. Renewable and Sustainable Energy Reviews, 2017, 69: 902-911. |
17 | Ostapkowicz P. Leak detection in liquid transmission pipelines using simplified pressure analysis techniques employing a minimum of standard and non-standard measuring devices[J]. Engineering Structures, 2016, 113: 194-205. |
18 | Zhang Y, Chen S L, Li J, et al. Leak detection monitoring system of long distance oil pipeline based on dynamic pressure transmitter[J]. Measurement, 2014, 49: 382-389. |
19 | 刘翠伟, 李雪洁, 李玉星, 等. 基于音波法的输气管道泄漏检测与定位[J]. 化工学报, 2014, 65(11): 4633-4642. |
Liu C W, Li X J, Li Y X, et al. Leak detection and location for natural gas pipelines based on acoustic waves[J]. CIESC Journal, 2014, 65(11): 4633-4642. | |
20 | Wang F, Lin W G, He Z Y, et al. Adaptive abnormal signal extraction based on iterative computations[C]//28th Chinese Control and Decision Conference. New York: IEEE, 2016: 6994-6999. |
21 | Wang F, Lin W G, Liu Z, et al. Pipeline leak detection by using Time-Domain statistical features[J]. IEEE Sensors Journal, 2017, 17(19): 6431-6442. |
22 | Norazlina S, Norsarahaida A, Baba G A. Leak detection of non-isothermal transient flow of hydrogen-natural gas mixture[J]. Journal of Loss Prevention in the Process Industries, 2017, 48: 244-253. |
23 | Qu Z G, Feng H, Zeng Z M, et al. A SVM-based pipeline leakage detection and pre-warning system[J]. Measurement, 2010, 43: 513-519. |
24 | Jin H, Zhang L B, Liang W, et al. Integrated leakage detection and localization model for gas pipelines based on the acoustic wave method [J]. Journal of Loss Prevention in the Process Industries, 2014, 27: 74-88. |
25 | Ogino T, Kawaguchi T, Yamashita S, et al. Measurement deviations for shear wave velocity of bender element test using time domain, cross-correlation, and frequency domain approaches[J]. Soils and Foundations, 2015, 55(2): 329-342. |
26 | Fabrício C A, Michael J B, Phillip F J, et al. The effects of resonances on time delay estimation for water leak detection in plastic pipes[J]. Journal of Sound and Vibration, 2018, 420: 315-329. |
27 | Dunlop G R. A rapid computational method for improvements to nearest neighbour interpolation[J]. Computers & Mathematics with Applications, 1980, 6(3): 349-353. |
28 | Jiang J J, Wang X Q, Duan F J, et al. An efficient algorithm for WBAF estimation based on linear interpolation and its estimation error[J]. Applied Acoustics, 2018, 142: 44-52. |
29 | 吴微, 师佳, 周华, 等. 基于样条插值模型的间歇精馏模拟与预测控制[J]. 化工学报, 2012, 63(4): 1124-1131. |
Wu W, Shi J, Zhou H, et al. Simulation and predictive control based on spline interpolation model of batch distillation[J]. CIESC Journal, 2012, 63(4): 1124-1131. | |
30 | Shang S H. Downscaling crop water sensitivity index using monotone piecewise cubic interpolation[J]. Pedosphere, 2013, 23(5): 662-667. |
[1] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
[2] | Xianheng YI, Wu ZHOU, Xiaoshu CAI, Tianyi CAI. Measurable range of nanoparticle concentration using optical fiber backward dynamic light scattering [J]. CIESC Journal, 2023, 74(8): 3320-3328. |
[3] | Dian LIN, Guomei JIANG, Xiubin XU, Bo ZHAO, Dongmei LIU, Xu WU. Preparation and drag reduction effect of silicon-based liquid-like anti-crude-oil-adhesion coatings [J]. CIESC Journal, 2023, 74(8): 3438-3445. |
[4] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[5] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[6] | Xuejin GAO, Yuzhuo YAO, Huayun HAN, Yongsheng QI. Fault monitoring of fermentation process based on attention dynamic convolutional autoencoder [J]. CIESC Journal, 2023, 74(6): 2503-2521. |
[7] | Shumin ZHENG, Pengcheng GUO, Jianguo YAN, Shuai WANG, Wenbo LI, Qi ZHOU. Experimental and predictive study on pressure drop of subcooled flow boiling in a mini-channel [J]. CIESC Journal, 2023, 74(4): 1549-1560. |
[8] | Xuerong GU, Shuoshi LIU, Siyu YANG. Research on multi-parameter optimization method based on parallel EGO and surrogate-assisted model [J]. CIESC Journal, 2023, 74(3): 1205-1215. |
[9] | Sheng’an ZHANG, Guilian LIU. Multi-objective optimization of high-efficiency solar water electrolysis hydrogen production system and its performance [J]. CIESC Journal, 2023, 74(3): 1260-1274. |
[10] | Jiaqing ZHANG, Rongpei JIANG, Weikang SHI, Boxiang WU, Chao YANG, Zhaohui LIU. Study on viscosity-temperature characteristics and component characteristics of rocket kerosene [J]. CIESC Journal, 2023, 74(2): 653-665. |
[11] | Jiahui CHEN, Xinze YANG, Guzhong CHEN, Zhen SONG, Zhiwen QI. A critical discussion on developing molecular property prediction models: density of ionic liquids as example [J]. CIESC Journal, 2023, 74(2): 630-641. |
[12] | Haiou YUAN, Fangjun YE, Shuo ZHANG, Yiqing LUO, Xigang YUAN. Synthesis of heat-integrated distillation sequences with intermediate heat exchangers [J]. CIESC Journal, 2023, 74(2): 796-806. |
[13] | Kuan HUANG, Yongde MA, Zhenping CAI, Yanning CAO, Lilong JIANG. Research progress in catalytic hydroconversion of lipid to second-generation biodiesel [J]. CIESC Journal, 2023, 74(1): 380-396. |
[14] | Yalin WANG, Yuqing PAN, Chenliang LIU. Intermittent process monitoring based on GSA-LSTM dynamic structure feature extraction [J]. CIESC Journal, 2022, 73(9): 3994-4002. |
[15] | Caifeng LI, Xiao WANG, Gangjian LI, Junzhang LIN, Weidong WANG, Qinglin SHU, Yanbin CAO, Meng XIAO. Synergistic relationship between hydrocarbon degrading and emulsifying strain SL-1 and endogenous bacteria during oil displacement [J]. CIESC Journal, 2022, 73(9): 4095-4102. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||