CIESC Journal ›› 2023, Vol. 74 ›› Issue (2): 630-641.DOI: 10.11949/0438-1157.20221060
• Thermodynamics • Previous Articles Next Articles
Jiahui CHEN(), Xinze YANG, Guzhong CHEN, Zhen SONG(
), Zhiwen QI
Received:
2022-07-27
Revised:
2022-09-22
Online:
2023-03-21
Published:
2023-02-05
Contact:
Zhen SONG
通讯作者:
宋震
作者简介:
陈家辉(1998—),男,硕士研究生,y30200121@mail.ecust.edu.cn
CLC Number:
Jiahui CHEN, Xinze YANG, Guzhong CHEN, Zhen SONG, Zhiwen QI. A critical discussion on developing molecular property prediction models: density of ionic liquids as example[J]. CIESC Journal, 2023, 74(2): 630-641.
陈家辉, 杨鑫泽, 陈顾中, 宋震, 漆志文. 以离子液体密度为例的分子性质预测模型建模方法探讨[J]. 化工学报, 2023, 74(2): 630-641.
阴离子 | ||||||
---|---|---|---|---|---|---|
![]() | ![]() | ![]() | ![]() | ![]() | ||
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | |
![]() | ![]() | ![]() | ![]() | ![]() | ||
![]() | ![]() | ![]() | ||||
![]() | ![]() | ![]() | ![]() | ![]() | ||
阳离子 | ||||||
![]() | ||||||
![]() | ![]() | |||||
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | |
取代基 | ||||||
![]() | ![]() | ![]() | ![]() | |||
![]() | ![]() | ![]() | ||||
![]() | ![]() | ![]() |
Table 1 Summary of IL groups involved in the current database
阴离子 | ||||||
---|---|---|---|---|---|---|
![]() | ![]() | ![]() | ![]() | ![]() | ||
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | |
![]() | ![]() | ![]() | ![]() | ![]() | ||
![]() | ![]() | ![]() | ||||
![]() | ![]() | ![]() | ![]() | ![]() | ||
阳离子 | ||||||
![]() | ||||||
![]() | ![]() | |||||
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | |
取代基 | ||||||
![]() | ![]() | ![]() | ![]() | |||
![]() | ![]() | ![]() | ||||
![]() | ![]() | ![]() |
基团 | ai /(g·cm-3) | bi /(g·cm-3) | ci /(g·cm-3) | 基团 | ai /(g·cm-3) | bi /(g·cm-3) | ci /(g·cm-3) |
---|---|---|---|---|---|---|---|
[FAP] | 1332.5510 | 35.9926 | -297.6490 | [Br] | 421.2706 | -70.5659 | 1194.5501 |
[OH] | 315.0302 | -16.4716 | 152.1414 | CH2 | -495.9480 | -139.2680 | 50.2011 |
[C2H5N] | 363.5765 | -17.0365 | -39.2012 | [N(CN)2] | 534.9675 | 49.3305 | 165.9673 |
[Quin] | 233.9771 | 141.8892 | 118.2426 | [BOB] | 691.3112 | 141.2362 | 49.9660 |
[PF6] | 1025.8120 | 86.8174 | -211.2030 | [C(CN)3] | 537.7315 | 20.2244 | 119.5993 |
[DMP] | 417.2392 | 242.7438 | 98.0166 | [CF3SO3] | 845.8750 | 46.5201 | 1.8886 |
[PiP] | 445.7565 | 59.1371 | -80.2106 | [CH3(OC2H4)2SO4] | 292.3812 | 261.2657 | 232.6971 |
[MPyr] | 260.2797 | 213.4264 | 274.2988 | [C6H13P] | 259.4138 | 242.9847 | 456.1185 |
ACCH2 | -113.2020 | 126.8616 | 37.4342 | CH3O | 174.0913 | -12.3810 | -54.9934 |
[BET] | 327.4982 | 33.2317 | 111.1289 | CH3COO | 373.9178 | 52.0520 | 327.4936 |
CH2CO | 28.1721 | 24.4682 | 7.7589 | CH2CN | 309.8592 | 16.7353 | -102.7530 |
CH2CH | 59.8125 | -64.3985 | -51.3387 | [C4H9N] | 315.9860 | 26.3907 | 88.25078 |
CH | -356.1550 | 91.7429 | 96.8151 | [NO3] | 367.7095 | 245.1441 | 203.2269 |
[C2H5P] | 60.7344 | 152.7399 | 240.5752 | ACH | 103.9828 | 95.4698 | -20.8510 |
[OAc] | 494.5046 | 181.0926 | 177.4210 | [Pyr] | 893.3338 | 88.8546 | -34.8107 |
[C8H17SO4] | 637.8334 | 25.0786 | 1.8104 | [Tf2N] | 1116.4811 | 146.3694 | -306.3093 |
[MIm] | 628.0468 | 109.3070 | -259.9160 | [C4F9SO3] | 707.6985 | 230.8441 | 90.8674 |
CH2O | -181.159 | 108.1054 | 135.9814 | [MMor] | 398.3023 | 92.8417 | -27.4225 |
CH2COO | -46.3322 | 492.7926 | 276.7435 | CH3 | 356.7834 | -117.3490 | -334.1902 |
[C8H17P] | 4.4335 | 332.7480 | 137.4351 | [BF4] | 846.4428 | 55.7841 | -130.6170 |
[Mpy] | 468.9210 | 45.9561 | 12.96739 | [CH3SO4] | 918.2557 | 29.3748 | -202.5350 |
[Cl] | 975.4551 | 42.8225 | 324.4328 | COOH | 240.8606 | 69.5928 | 65.7629 |
[SCN] | 565.8685 | -1.6690 | 98.4710 | [Py] | 1032.1431 | 65.0960 | -98.2731 |
[TOS] | 312.0031 | 286.1815 | 198.6424 | [Im] | 1378.9090 | 170.9318 | -64.9755 |
[C8H17N] | 129.2648 | 203.1364 | 190.9869 | CH=CH | -50.0497 | -5.9144 | 4.0919 |
[CH3N] | 212.9291 | 193.4286 | 421.8956 | [C4H9P] | 120.4446 | 13.6882 | 294.3852 |
[TFA] | 648.9382 | 157.5455 | 11.9933 | [C2H5SO4] | 690.0060 | 14.1393 | 70.6529 |
[DEP] | 507.8918 | 19.4882 | 199.4548 | [B(CN)4] | 511.4053 | 50.7658 | 103.6770 |
[CH3SO3] | 636.4792 | 26.6501 | 120.5593 | [I] | 752.8853 | 208.6602 | 49.0845 |
AC | -210.4530 | -431.0870 | -457.7710 | CHO | -10.0741 | 31.4214 | 24.6816 |
[DBP] | 241.7651 | 241.6314 | 237.1266 | [Lac] | 534.2245 | 71.8367 | 118.6878 |
Table A1 Group contribution parameters of the obtained RR model
基团 | ai /(g·cm-3) | bi /(g·cm-3) | ci /(g·cm-3) | 基团 | ai /(g·cm-3) | bi /(g·cm-3) | ci /(g·cm-3) |
---|---|---|---|---|---|---|---|
[FAP] | 1332.5510 | 35.9926 | -297.6490 | [Br] | 421.2706 | -70.5659 | 1194.5501 |
[OH] | 315.0302 | -16.4716 | 152.1414 | CH2 | -495.9480 | -139.2680 | 50.2011 |
[C2H5N] | 363.5765 | -17.0365 | -39.2012 | [N(CN)2] | 534.9675 | 49.3305 | 165.9673 |
[Quin] | 233.9771 | 141.8892 | 118.2426 | [BOB] | 691.3112 | 141.2362 | 49.9660 |
[PF6] | 1025.8120 | 86.8174 | -211.2030 | [C(CN)3] | 537.7315 | 20.2244 | 119.5993 |
[DMP] | 417.2392 | 242.7438 | 98.0166 | [CF3SO3] | 845.8750 | 46.5201 | 1.8886 |
[PiP] | 445.7565 | 59.1371 | -80.2106 | [CH3(OC2H4)2SO4] | 292.3812 | 261.2657 | 232.6971 |
[MPyr] | 260.2797 | 213.4264 | 274.2988 | [C6H13P] | 259.4138 | 242.9847 | 456.1185 |
ACCH2 | -113.2020 | 126.8616 | 37.4342 | CH3O | 174.0913 | -12.3810 | -54.9934 |
[BET] | 327.4982 | 33.2317 | 111.1289 | CH3COO | 373.9178 | 52.0520 | 327.4936 |
CH2CO | 28.1721 | 24.4682 | 7.7589 | CH2CN | 309.8592 | 16.7353 | -102.7530 |
CH2CH | 59.8125 | -64.3985 | -51.3387 | [C4H9N] | 315.9860 | 26.3907 | 88.25078 |
CH | -356.1550 | 91.7429 | 96.8151 | [NO3] | 367.7095 | 245.1441 | 203.2269 |
[C2H5P] | 60.7344 | 152.7399 | 240.5752 | ACH | 103.9828 | 95.4698 | -20.8510 |
[OAc] | 494.5046 | 181.0926 | 177.4210 | [Pyr] | 893.3338 | 88.8546 | -34.8107 |
[C8H17SO4] | 637.8334 | 25.0786 | 1.8104 | [Tf2N] | 1116.4811 | 146.3694 | -306.3093 |
[MIm] | 628.0468 | 109.3070 | -259.9160 | [C4F9SO3] | 707.6985 | 230.8441 | 90.8674 |
CH2O | -181.159 | 108.1054 | 135.9814 | [MMor] | 398.3023 | 92.8417 | -27.4225 |
CH2COO | -46.3322 | 492.7926 | 276.7435 | CH3 | 356.7834 | -117.3490 | -334.1902 |
[C8H17P] | 4.4335 | 332.7480 | 137.4351 | [BF4] | 846.4428 | 55.7841 | -130.6170 |
[Mpy] | 468.9210 | 45.9561 | 12.96739 | [CH3SO4] | 918.2557 | 29.3748 | -202.5350 |
[Cl] | 975.4551 | 42.8225 | 324.4328 | COOH | 240.8606 | 69.5928 | 65.7629 |
[SCN] | 565.8685 | -1.6690 | 98.4710 | [Py] | 1032.1431 | 65.0960 | -98.2731 |
[TOS] | 312.0031 | 286.1815 | 198.6424 | [Im] | 1378.9090 | 170.9318 | -64.9755 |
[C8H17N] | 129.2648 | 203.1364 | 190.9869 | CH=CH | -50.0497 | -5.9144 | 4.0919 |
[CH3N] | 212.9291 | 193.4286 | 421.8956 | [C4H9P] | 120.4446 | 13.6882 | 294.3852 |
[TFA] | 648.9382 | 157.5455 | 11.9933 | [C2H5SO4] | 690.0060 | 14.1393 | 70.6529 |
[DEP] | 507.8918 | 19.4882 | 199.4548 | [B(CN)4] | 511.4053 | 50.7658 | 103.6770 |
[CH3SO3] | 636.4792 | 26.6501 | 120.5593 | [I] | 752.8853 | 208.6602 | 49.0845 |
AC | -210.4530 | -431.0870 | -457.7710 | CHO | -10.0741 | 31.4214 | 24.6816 |
[DBP] | 241.7651 | 241.6314 | 237.1266 | [Lac] | 534.2245 | 71.8367 | 118.6878 |
基团种类 | 个数 | ai /(g·cm-3) | bi /(g·cm-3) | ci /(g·cm-3) |
---|---|---|---|---|
[MPyr] | 1 | 260.2797 | 213.4264 | 274.2988 |
[Tf2N] | 1 | 1116.4811 | 146.3694 | -306.3093 |
CH2CN | 1 | 309.8592 | 16.7353 | -102.7530 |
Table A2 Group fragmentation of [ACNMPyr][Tf2N] and the corresponding contribution parameters
基团种类 | 个数 | ai /(g·cm-3) | bi /(g·cm-3) | ci /(g·cm-3) |
---|---|---|---|---|
[MPyr] | 1 | 260.2797 | 213.4264 | 274.2988 |
[Tf2N] | 1 | 1116.4811 | 146.3694 | -306.3093 |
CH2CN | 1 | 309.8592 | 16.7353 | -102.7530 |
基团种类 | 涉及分子个数 | 基团种类 | 涉及分子个数 | 基团种类 | 涉及分子个数 | 基团种类 | 涉及分子个数 |
---|---|---|---|---|---|---|---|
[FAP] | 20 | [MIm] | 94 | CH2 | 5137 | [MMor] | 24 |
[OH] | 83 | CH2O | 264 | [N(CN)2] | 76 | CH3 | 1842 |
[C2H5N] | 40 | CH2COO | 34 | [BOB] | 9 | [BF4] | 66 |
[Quin] | 4 | [C8H17P] | 15 | [C(CN)3] | 7 | [CH3SO4] | 32 |
[PF6] | 28 | [Mpy] | 21 | [CF3SO3] | 31 | COOH | 10 |
[DMP] | 10 | [Cl] | 56 | [CH3(OC2H4)2SO4] | 4 | [Py] | 124 |
[PiP] | 50 | [SCN] | 29 | [C6H13P] | 24 | [Im] | 498 |
[MPyr] | 16 | [TOS] | 8 | CH3O | 62 | CH=CH | 6 |
ACCH2 | 15 | [C8H17N] | 10 | CH3COO | 19 | [C4H9P] | 36 |
[BET] | 16 | [CH3N] | 124 | CH2CN | 57 | [C2H5SO4] | 18 |
CH2CO | 2 | [TFA] | 22 | [C4H9N] | 17 | [B(CN)4] | 12 |
CH2CH | 36 | [DEP] | 7 | [NO3] | 10 | [I] | 4 |
CH | 115 | [CH3SO3] | 23 | ACH | 283 | CHO | 24 |
[C2H5P] | 25 | AC | 43 | [Pyr] | 54 | [Lac] | 11 |
[OAc] | 7 | [DBP] | 10 | [Tf2N] | 503 | ||
[C8H17SO4] | 2 | [Br] | 40 | [C4F9SO3] | 11 |
Table A3 Summary of the number of ILs containing each group in the dataset
基团种类 | 涉及分子个数 | 基团种类 | 涉及分子个数 | 基团种类 | 涉及分子个数 | 基团种类 | 涉及分子个数 |
---|---|---|---|---|---|---|---|
[FAP] | 20 | [MIm] | 94 | CH2 | 5137 | [MMor] | 24 |
[OH] | 83 | CH2O | 264 | [N(CN)2] | 76 | CH3 | 1842 |
[C2H5N] | 40 | CH2COO | 34 | [BOB] | 9 | [BF4] | 66 |
[Quin] | 4 | [C8H17P] | 15 | [C(CN)3] | 7 | [CH3SO4] | 32 |
[PF6] | 28 | [Mpy] | 21 | [CF3SO3] | 31 | COOH | 10 |
[DMP] | 10 | [Cl] | 56 | [CH3(OC2H4)2SO4] | 4 | [Py] | 124 |
[PiP] | 50 | [SCN] | 29 | [C6H13P] | 24 | [Im] | 498 |
[MPyr] | 16 | [TOS] | 8 | CH3O | 62 | CH=CH | 6 |
ACCH2 | 15 | [C8H17N] | 10 | CH3COO | 19 | [C4H9P] | 36 |
[BET] | 16 | [CH3N] | 124 | CH2CN | 57 | [C2H5SO4] | 18 |
CH2CO | 2 | [TFA] | 22 | [C4H9N] | 17 | [B(CN)4] | 12 |
CH2CH | 36 | [DEP] | 7 | [NO3] | 10 | [I] | 4 |
CH | 115 | [CH3SO3] | 23 | ACH | 283 | CHO | 24 |
[C2H5P] | 25 | AC | 43 | [Pyr] | 54 | [Lac] | 11 |
[OAc] | 7 | [DBP] | 10 | [Tf2N] | 503 | ||
[C8H17SO4] | 2 | [Br] | 40 | [C4F9SO3] | 11 |
1 | Shen J, Nicolaou C A. Molecular property prediction: recent trends in the era of artificial intelligence[J]. Drug Discovery Today: Technologies, 2019, 32/33: 29-36. |
2 | Velez C, Acevedo O. Simulation of deep eutectic solvents: progress to promises[J]. WIREs Computational Molecular Science, 2022, 12(4): e1598. |
3 | López-López E, Bajorath J, Medina-Franco J L. Informatics for chemistry, biology, and biomedical sciences[J]. Journal of Chemical Information and Modeling, 2021, 61(1): 26-35. |
4 | Vermeire F H, Chung Y, Green W H. Predicting solubility limits of organic solutes for a wide range of solvents and temperatures[J]. Journal of the American Chemical Society, 2022, 144(24): 10785-10797. |
5 | Tan T, Cheng H Y, Chen G Z, et al. Prediction of infinite-dilution activity coefficients with neural collaborative filtering[J]. AIChE Journal, 2022, 68(9): e17789. |
6 | Muratov E N, Bajorath J, Sheridan R P, et al. QSAR without borders[J]. Chemical Society Reviews, 2020, 49(11): 3525-3564. |
7 | Stärk H, Beaini D, Corso G, et al. 3D infomax improves GNNs for molecular property prediction[EB/OL]. 2021, arXiv: 2110.04126[cs.LG]. . |
8 | Chen D, Gao K F, Nguyen D D, et al. Algebraic graph-assisted bidirectional transformers for molecular property prediction[J]. Nature Communications, 2021, 12(1): 3521. |
9 | 桂成敏, 朱瑞松, 张傑, 等. 离子液体气体干燥技术的研究进展[J]. 化工学报, 2020, 71(1): 92-105. |
Gui C M, Zhu R S, Zhang J, et al. Progress on ionic liquids for gas drying[J]. CIESC Journal, 2020, 71(1): 92-105. | |
10 | Peng D L, Zhang J N, Cheng H Y, et al. Computer-aided ionic liquid design for separation processes based on group contribution method and COSMO-SAC model[J]. Chemical Engineering Science, 2017, 159: 58-68. |
11 | Yan F Y, He W S, Jia Q Z, et al. Prediction of ionic liquids viscosity at variable temperatures and pressures[J]. Chemical Engineering Science, 2018, 184: 134-140. |
12 | Chen G Z, Song Z, Qi Z W, et al. Neural recommender system for the activity coefficient prediction and UNIFAC model extension of ionic liquid-solute systems[J]. AIChE Journal, 2021, 67(4): e17171. |
13 | Gardas R L, Coutinho J A P. Group contribution methods for the prediction of thermophysical and transport properties of ionic liquids[J]. AIChE Journal, 2009, 55(5): 1274-1290. |
14 | Sepehri B. A review on created QSPR models for predicting ionic liquids properties and their reliability from chemometric point of view[J]. Journal of Molecular Liquids, 2020, 297: 112013. |
15 | Lei Z G, Dai C N, Wang W, et al. UNIFAC model for ionic liquid-CO2 systems[J]. AIChE Journal, 2014, 60(2): 716-729. |
16 | Rybinska-Fryca A, Sosnowska A, Puzyn T. Prediction of dielectric constant of ionic liquids[J]. Journal of Molecular Liquids, 2018, 260: 57-64. |
17 | Mellein B R, Scurto A M, Shiflett M B. Gas solubility in ionic liquids[J]. Current Opinion in Green and Sustainable Chemistry, 2021, 28: 100425. |
18 | Dong K, Liu X M, Dong H F, et al. Multiscale studies on ionic liquids[J]. Chemical Reviews, 2017, 117(10): 6636-6695. |
19 | Paduszyński K, Domańska U. Viscosity of ionic liquids: an extensive database and a new group contribution model based on a feed-forward artificial neural network[J]. Journal of Chemical Information and Modeling, 2014, 54(5): 1311-1324. |
20 | Makarov D M, Fadeeva Y A, Shmukler L E, et al. Beware of proper validation of models for ionic Liquids![J]. Journal of Molecular Liquids, 2021, 344: 117722. |
21 | Koutsoukos S, Philippi F, Malaret F, et al. A review on machine learning algorithms for the ionic liquid chemical space[J]. Chemical Science, 2021, 12(20): 6820-6843. |
22 | Gardas R L, Coutinho J A P. Extension of the Ye and Shreeve group contribution method for density estimation of ionic liquids in a wide range of temperatures and pressures[J]. Fluid Phase Equilibria, 2008, 263(1): 26-32. |
23 | Lazzús J A, Pulgar- Villarroel G. A group contribution method to estimate the viscosity of ionic liquids at different temperatures[J]. Journal of Molecular Liquids, 2015, 209: 161-168. |
24 | Taherifard H, Raeissi S. Estimation of the densities of ionic liquids using a group contribution method[J]. Journal of Chemical & Engineering Data, 2016, 61(12): 4031-4038. |
25 | Chen Y Q, Kontogeorgis G M, Woodley J M. Group contribution based estimation method for properties of ionic liquids[J]. Industrial & Engineering Chemistry Research, 2019, 58(10): 4277-4292. |
26 | Paduszyński K. Extensive databases and group contribution QSPRs of ionic liquids properties (1): Density[J]. Industrial & Engineering Chemistry Research, 2019, 58(13): 5322-5338. |
27 | Paduszyński K. Extensive databases and group contribution QSPRs of ionic liquids properties (2): Viscosity[J]. Industrial & Engineering Chemistry Research, 2019, 58(36): 17049-17066. |
28 | Paduszyński K. Extensive databases and group contribution QSPRs of ionic liquid properties (3): Surface tension[J]. Industrial & Engineering Chemistry Research, 2021, 60(15): 5705-5720. |
29 | Alshehri A S, Tula A K, You F, et al. Next generation pure component property estimation models: with and without machine learning techniques[J]. AIChE Journal, 2022, 68(6): e17469. |
30 | Alshehri A S, Gani R, You F Q. Deep learning and knowledge-based methods for computer-aided molecular design—toward a unified approach: state-of-the-art and future directions[J]. Computers & Chemical Engineering, 2020, 141: 107005. |
31 | Kailkhura B, Gallagher B, Kim S, et al. Reliable and explainable machine-learning methods for accelerated material discovery[J]. Npj Computational Materials, 2019, 5(1): 108. |
32 | Esmaeili-Jaghdan Z, Shariati A, Nikou M R K. A hybrid smart modeling approach for estimation of pure ionic liquids viscosity[J]. Journal of Molecular Liquids, 2016, 222: 14-27. |
33 | Song Z, Shi H W, Zhang X, et al. Prediction of CO2 solubility in ionic liquids using machine learning methods[J]. Chemical Engineering Science, 2020, 223: 115752. |
34 | Kazakov A F, Magee J W, Chirico R D, et al. Ionic Liquids Database - ILThermo (v 2.0)[DB/OL]. NIST, 2013[2022-07-23]. . |
35 | Müller S. Flexible heuristic algorithm for automatic molecule fragmentation: application to the UNIFAC group contribution model[J]. Journal of Cheminformatics, 2019, 11(1): 57. |
36 | Qiao Y, Ma Y G, Huo Y, et al. A group contribution method to estimate the densities of ionic liquids[J]. The Journal of Chemical Thermodynamics, 2010, 42(7): 852-855. |
37 | 熊焰, 丁靖, 虞大红, 等. 离子液体热物理性质与相行为预测的基团贡献法[J]. 化工学报, 2012, 63(3): 667-676. |
Xiong Y, Ding J, Yu D H, et al. Group contribution methods for prediction of thermophysical properties and phase behavior of ionic liquids[J]. CIESC Journal, 2012, 63(3): 667-676. | |
38 | Zhou Z H. Machine Learning [M]. Singapore: Springer, 2021. |
39 | Leeuwenberg A M, Smeden M V, Langendijk J A, et al. Comparing methods addressing multi-collinearity when developing prediction models[EB/OL]. 2021, arXiv: 2101.01603[stat.ME]. . |
40 | Krstajic D, Buturovic L J, Leahy D E, et al. Cross-validation pitfalls when selecting and assessing regression and classification models[J]. Journal of Cheminformatics, 2014, 6(1): 10. |
41 | Zanotti C, Rotiroti M, Sterlacchini S, et al. Choosing between linear and nonlinear models and avoiding overfitting for short and long term groundwater level forecasting in a linear system[J]. Journal of Hydrology, 2019, 578: 124015. |
[1] | Jingwei CHAO, Jiaxing XU, Tingxian LI. Investigation on the heating performance of the tube-free-evaporation based sorption thermal battery [J]. CIESC Journal, 2023, 74(S1): 302-310. |
[2] | Long ZHANG, Mengjie SONG, Keke SHAO, Xuan ZHANG, Jun SHEN, Runmiao GAO, Zekang ZHEN, Zhengyong JIANG. Simulation study on frosting at windward fin end of heat exchanger [J]. CIESC Journal, 2023, 74(S1): 179-182. |
[3] | Qi WANG, Bin ZHANG, Xiaoxin ZHANG, Hujian WU, Haitao ZHAN, Tao WANG. Synthesis of isoxepac and 2-ethylanthraquinone catalyzed by chloroaluminate-triethylamine ionic liquid/P2O5 [J]. CIESC Journal, 2023, 74(S1): 245-249. |
[4] | Ruimin CHE, Wenqiu ZHENG, Xiaoyu WANG, Xin LI, Feng XU. Research progress on homogeneous processing of cellulose in ionic liquids [J]. CIESC Journal, 2023, 74(9): 3615-3627. |
[5] | Meisi CHEN, Weida CHEN, Xinyao LI, Shangyu LI, Youting WU, Feng ZHANG, Zhibing ZHANG. Advances in silicon-based ionic liquid microparticle enhanced gas capture and conversion [J]. CIESC Journal, 2023, 74(9): 3628-3639. |
[6] | Lizhi WANG, Qiancheng HANG, Yeling ZHENG, Yan DING, Jiaji CHEN, Qing YE, Jinlong LI. Separation of methyl propionate + methanol azeotrope using ionic liquid entrainers [J]. CIESC Journal, 2023, 74(9): 3731-3741. |
[7] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[8] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[9] | Shaoqi YANG, Shuheng ZHAO, Lungang CHEN, Chenguang WANG, Jianjun HU, Qing ZHOU, Longlong MA. Hydrodeoxygenation of lignin-derived compounds to alkanes in Raney Ni-protic ionic liquid system [J]. CIESC Journal, 2023, 74(9): 3697-3707. |
[10] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[11] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[12] | Yuanliang ZHANG, Xinqi LUAN, Weige SU, Changhao LI, Zhongxing ZHAO, Liqin ZHOU, Jianmin CHEN, Yan HUANG, Zhenxia ZHAO. Study on selective extraction of nicotine by ionic liquids composite extractant and DFT calculation [J]. CIESC Journal, 2023, 74(7): 2947-2956. |
[13] | Feng DU, Siqi YIN, Hui LUO, Wenan DENG, Chuan LI, Zhenwei HUANG, Wenjing WANG. Study on size effect of H2 adsorption and dissociation on Mo x S y clusters [J]. CIESC Journal, 2022, 73(9): 3895-3903. |
[14] | Jinyu GUO, Zhe WANG, Yuan LI. Fault detection method based on kernel entropy independent component analysis [J]. CIESC Journal, 2022, 73(8): 3647-3658. |
[15] | Xiaqi YU, Ge FENG, Jinyan ZHAO, Jiayuan LI, Shengwei DENG, Jingnan ZHENG, Wenwen LI, Yaqiu WANG, Lan SHEN, Xu LIU, Weiwei XU, Jianguo WANG, Shibin WANG, Zihao YAO, Chengli MAO. A first-principles study of the interaction between TDI-TMP-T313 and AP [J]. CIESC Journal, 2022, 73(8): 3511-3517. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 447
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 372
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||