CIESC Journal ›› 2020, Vol. 71 ›› Issue (3): 1095-1102.DOI: 10.11949/0438-1157.20190762
• Process system engineering • Previous Articles Next Articles
Tao CAI(),Bo YANG,Hongguang LI()
Received:
2019-07-04
Revised:
2019-09-19
Online:
2020-03-05
Published:
2020-03-05
Contact:
Hongguang LI
通讯作者:
李宏光
作者简介:
蔡涛(1991—),男,硕士研究生,CLC Number:
Tao CAI, Bo YANG, Hongguang LI. Chemical process multivariate time series predictions based on time-delay-mining fuzzy time cognitive maps[J]. CIESC Journal, 2020, 71(3): 1095-1102.
蔡涛, 杨博, 李宏光. 基于时延挖掘模糊时间认知图的化工过程多变量时序预测方法[J]. 化工学报, 2020, 71(3): 1095-1102.
Add to citation manager EndNote|Ris|BibTeX
算法1:使用PSO求解FTCM的参数 |
---|
Input:activation:x1,x2,…,xn; targets: t1,t2,…,tn; weight matrix W; memory factor γ; cooperation index w0; ?(x) parameterτ; performance index(e.g. RMSE); |
Output:optimized W, γ, w0, τ |
Repeat For k=1 to N do Pass k-th activation xk; Compute FCM response yk using Eq.(4); According yk and tk to compute performance index; Adjust W, γ, w0, τ to minimize the performance index using PSO; End Until performance index or algorithm’s iterations has been exceeded |
Table 1 PSO optimization pseudo code
算法1:使用PSO求解FTCM的参数 |
---|
Input:activation:x1,x2,…,xn; targets: t1,t2,…,tn; weight matrix W; memory factor γ; cooperation index w0; ?(x) parameterτ; performance index(e.g. RMSE); |
Output:optimized W, γ, w0, τ |
Repeat For k=1 to N do Pass k-th activation xk; Compute FCM response yk using Eq.(4); According yk and tk to compute performance index; Adjust W, γ, w0, τ to minimize the performance index using PSO; End Until performance index or algorithm’s iterations has been exceeded |
算法2:布谷鸟搜索算法执行过程 |
---|
Begin Initial population: n host nests Xi(i =1,2,…,n) Calculation fitness: fi (i =1,2,…,n); While(not met stop condition) using Levy flight to get new solution Xi,calculation new fitness fj; select candidate solution Xi; If (fi > fj): replace candidate solution with new solution; End According to probability pa to abandon bad solution, using a preference random walk to generate a new solution instead of a discarded solution, retain the optimal solution End End |
Table 2 Cuckoo search pseudo code
算法2:布谷鸟搜索算法执行过程 |
---|
Begin Initial population: n host nests Xi(i =1,2,…,n) Calculation fitness: fi (i =1,2,…,n); While(not met stop condition) using Levy flight to get new solution Xi,calculation new fitness fj; select candidate solution Xi; If (fi > fj): replace candidate solution with new solution; End According to probability pa to abandon bad solution, using a preference random walk to generate a new solution instead of a discarded solution, retain the optimal solution End End |
概念节点 | 描述 |
---|---|
C1 | 给水温度 |
C2 | 给水流量 |
C3 | 排污流量 |
C4 | 蒸汽流量 |
C5 | 汽包液位 |
Table 3 Correlated variables
概念节点 | 描述 |
---|---|
C1 | 给水温度 |
C2 | 给水流量 |
C3 | 排污流量 |
C4 | 蒸汽流量 |
C5 | 汽包液位 |
相关变量 | 最大相关系数 | 时延/s |
---|---|---|
C1→C5 | 0.1022 | 807 |
C2→C5 | 0.6929 | 750 |
C3→C5 | 0.5373 | 78 |
C4→C5 | 0.5307 | 375 |
C5→C5 | — | 1 |
Table 4 Time-delay mining
相关变量 | 最大相关系数 | 时延/s |
---|---|---|
C1→C5 | 0.1022 | 807 |
C2→C5 | 0.6929 | 750 |
C3→C5 | 0.5373 | 78 |
C4→C5 | 0.5307 | 375 |
C5→C5 | — | 1 |
τ | RMSE×102 | ||||
---|---|---|---|---|---|
传统FCM | 改进FTCM | 无时延 | 无自影响γ | 无偏置w0 | |
1 | 35.9318 | 17.5711 | 33.0864 | 39.0032 | 33.3274 |
2 | 37.8351 | 8.8389 | 22.7103 | 42.4510 | 22.0586 |
3 | 42.9456 | 5.9062 | 13.4211 | 42.8381 | 12.2322 |
4 | 43.5164 | 6.3064 | 4.2688 | 43.5805 | 9.9159 |
5 | 43.0080 | 1.3927 | 3.1508 | 41.0092 | 6.5976 |
6 | 43.3243 | 2.9986 | 2.7560 | 43.3517 | 3.8549 |
7 | 43.8856 | 5.5132 | 3.0433 | 43.3933 | 4.6063 |
8 | 43.3293 | 4.8570 | 10.4147 | 45.3498 | 7.6283 |
9 | 43.7955 | 13.0252 | 13.9385 | 42.9575 | 5.2725 |
Table 5 Errors corresponding to different factors
τ | RMSE×102 | ||||
---|---|---|---|---|---|
传统FCM | 改进FTCM | 无时延 | 无自影响γ | 无偏置w0 | |
1 | 35.9318 | 17.5711 | 33.0864 | 39.0032 | 33.3274 |
2 | 37.8351 | 8.8389 | 22.7103 | 42.4510 | 22.0586 |
3 | 42.9456 | 5.9062 | 13.4211 | 42.8381 | 12.2322 |
4 | 43.5164 | 6.3064 | 4.2688 | 43.5805 | 9.9159 |
5 | 43.0080 | 1.3927 | 3.1508 | 41.0092 | 6.5976 |
6 | 43.3243 | 2.9986 | 2.7560 | 43.3517 | 3.8549 |
7 | 43.8856 | 5.5132 | 3.0433 | 43.3933 | 4.6063 |
8 | 43.3293 | 4.8570 | 10.4147 | 45.3498 | 7.6283 |
9 | 43.7955 | 13.0252 | 13.9385 | 42.9575 | 5.2725 |
1 | 陈龙, 刘全利, 王霖青, 等. 基于数据的流程工业生产过程指标预测方法综述[J]. 自动化学报, 2017, 43(6): 944-954. |
Chen L, Liu Q L, Wang L Q, et al. Data-driven prediction on performance indicators in process industry: a survey[J]. Acta Automatica Sinica, 2017, 43(6): 944-954. | |
2 | 张浩, 刘振娟, 李宏光, 等. 基于关联变量时滞分析卷积神经网络的生产过程时间序列预测方法[J]. 化工学报, 2017,68(9): 3501-3510. |
Zhang H, Liu Z J, Li H G, et al. Process time series prediction based on application of correlated process variables to CNN time delayed analyses[J]. CIESC Journal, 2017, 68(9): 3501-3510. | |
3 | Kosko B. Fuzzy cognitive maps[J]. International Journal of Man-Machine Studies, 1986, 24(1): 65-75. |
4 | 陈宁, 彭俊洁, 王磊, 等. 模糊灰色认知网络的建模方法及应用[J]. 自动化学报, 2018, 44(7): 1227-1236. |
Chen N, Peng J J, Wang L, et al. Fuzzy grey cognitive networks modeling and its application[J]. Acta Automatica Sinica, 2018, 44(7): 1227-1236. | |
5 | Mls K, Cimler R, Vaščák J, et al. Interactive evolutionary optimization of fuzzy cognitive maps[J]. Neurocomputing, 2017, 232: 58-68. |
6 | Homenda W, Jastrzebska A. Clustering techniques for fuzzy cognitive map design for time series modeling[J]. Neurocomputing, 2017, 232: 3-15. |
7 | Froelich W, Pedrycz W. Fuzzy cognitive maps in the modeling of granular time series[J]. Knowledge-Based Systems, 2017, 115: 110-122. |
8 | Lu W, Yang J, Liu X, et al. The modeling and prediction of time series based on synergy of high-order fuzzy cognitive map and fuzzy c-means clustering[J]. Knowledge-Based Systems, 2014, 70: 242-255. |
9 | Song H, Miao C, Roel W, et al. Implementation of fuzzy cognitive maps based on fuzzy neural network and application in prediction of time series[J]. IEEE Transactions on Fuzzy Systems, 2010, 18(2): 233-250. |
10 | Pedrycz W, Jastrzebska A, Homenda W. Design of fuzzy cognitive maps for modeling time series[J]. IEEE Transactions on Fuzzy Systems, 2016, 24(1): 120-130. |
11 | Papageorgiou E I, Poczęta K. A two-stage model for time series prediction based on fuzzy cognitive maps and neural networks[J]. Neurocomputing, 2017, 232: 113-121. |
12 | Song H J, Miao C Y, Shen Z Q, et al. Design of fuzzy cognitive maps using neural networks for predicting chaotic time series[J]. Neural Networks, 2010, 23(10): 1264-1275. |
13 | Papageorgiou E I, Froelich W. Application of evolutionary fuzzy cognitive maps for prediction of pulmonary infections[J]. IEEE Transactions on Information Technology in Biomedicine, 2012.16(1): 143-149. |
14 | Papageorgiou E I, Froelich W. Multi-step prediction of pulmonary infection with the use of evolutionary fuzzy cognitive maps[J]. Neurocomputing, 2012, 92: 28-35. |
15 | Froelich W, Papageorgiou E I, Samarinas M, et al. Application of evolutionary fuzzy cognitive maps to the long-term prediction of prostate cancer[J]. Applied Soft Computing, 2012, 12(12): 3810-3817. |
16 | Stach W, Kurgan L, Pedrycz W, et al. Genetic learning of fuzzy cognitive maps[J]. Fuzzy Sets and Systems, 2005, 153(3): 371-401. |
17 | Papageorgiou E I, Parsopoulos K E, Stylios C S, et al. Fuzzy cognitive maps learning using particle swarm optimization[J]. Journal of Intelligent Information Systems, 2005, 25(1): 95-121. |
18 | Salmeron J L, Ruiz-Celma A, Mena A. Learning FCMs with multi-local and balanced memetic algorithms for forecasting industrial drying processes[J]. Neurocomputing, 2017, 232: 52-57. |
19 | Papageorgiou E I. Learning algorithms for fuzzy cognitive maps—a review study[J]. IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews), 2012, 42(2): 150-163. |
20 | Liu Z Q, Zhang J Y. Interrogating the structure of fuzzy cognitive maps[J]. Soft Computing, 2003, 7(3): 148-153. |
21 | Zhang J Y, Liu Z Q, Zhou S. Dynamic domination in fuzzy causal networks[J]. IEEE Transactions on Fuzzy Systems, 2006, 14(1): 42-57. |
22 | Hagiwara M. Extended fuzzy cognitive maps[C]//IEEE International Conference on Fuzzy Systems. IEEE, 1992: 795-801. |
23 | 骆祥峰, 高隽. 概率模糊认知图[J]. 中国科学技术大学学报, 2003, 33(1): 26-33. |
Luo X F, Gao J. Probabilistic fuzzy fognitive maps[J]. Journal of University of Science and Technology of China, 2003, 33(1): 26-33. | |
24 | Park K S, Kim S H. Fuzzy cognitive maps considering time relationships[J]. International Journal of Human-Computer Studies, 1995, 42(2): 157-168. |
25 | Wei Z, Lu L, Yanchun Z. Using fuzzy cognitive time maps for modeling and evaluating trust dynamics in the virtual enterprises[J]. Expert Systems with Applications, 2008, 35(4): 1583-1592. |
26 | Homenda W, Jastrzebska A, Pedrycz W. Modeling time series with fuzzy cognitive maps[C]// IEEE International Conference on Fuzzy Systems. IEEE, 2014. |
27 | Yang F, Shah S L, Xiao D, et a1. Improved correlation analysis and visualization of industrial alarm data[J]. ISA Transactions,2012, 51(4): 499-506. |
28 | Yang B, Li H, Wen B. A dynamic time delay analysis approach for correlated process variables[J]. Chemical Engineering Research and Design, 2017, 122: 141-150. |
29 | Nasiriyan-Rad H, Amirkhani A, Naimi A, et al. Learning fuzzy cognitive map with PSO algorithm for grading celiac disease[C]// 2016 23rd Iranian Conference on Biomedical Engineering and 2016 1st International Iranian Conference on Biomedical Engineering (ICBME). IEEE, 2016. |
30 | Salmeron J L, Rahimi S A, Navali A M, et al. Medical diagnosis of Rheumatoid Arthritis using data driven PSO-FCM with scarce datasets[J]. Neurocomputing, 2017, 232: 104-112. |
31 | Salmeron J L, Froelich W. Dynamic optimization of fuzzy cognitive maps for time series forecasting[J]. Knowledge-Based Systems, 2016, 105: 29-37. |
32 | Yang X S, Deb S. Cuckoo search via Levy flights[C]//Nature&Biologically inspired computing. World Congress on IEEE,2009: 210-214. |
[1] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[2] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[3] | Yuying GUO, Jiaqiang JING, Wanni HUANG, Ping ZHANG, Jie SUN, Yu ZHU, Junxuan FENG, Hongjiang LU. Water-lubricated drag reduction and pressure drop model modification for heavy oil pipeline [J]. CIESC Journal, 2023, 74(7): 2898-2907. |
[4] | Yuan YU, Weiwei CHEN, Junjie FU, Jiaxiang LIU, Zhiwei JIAO. Study and prediction of flow field in the annular region of geometrically similar turbo air classifier [J]. CIESC Journal, 2023, 74(6): 2363-2373. |
[5] | Yanhui LI, Shaoming DING, Zhouyang BAI, Yinan ZHANG, Zhihong YU, Limei XING, Pengfei GAO, Yongzhen WANG. Corrosion micro-nano scale kinetics model development and application in non-conventional supercritical boilers [J]. CIESC Journal, 2023, 74(6): 2436-2446. |
[6] | Xinyuan WU, Qilei LIU, Boyuan CAO, Lei ZHANG, Jian DU. Group2vec: group vector representation and its property prediction applications based on unsupervised machine learning [J]. CIESC Journal, 2023, 74(3): 1187-1194. |
[7] | Jiahui CHEN, Xinze YANG, Guzhong CHEN, Zhen SONG, Zhiwen QI. A critical discussion on developing molecular property prediction models: density of ionic liquids as example [J]. CIESC Journal, 2023, 74(2): 630-641. |
[8] | Kenian SHI, Jingyuan ZHENG, Yu QIAN, Siyu YANG. Two-stage stochastic programming of steam power system based on Markov chain [J]. CIESC Journal, 2023, 74(2): 807-817. |
[9] | Jing YANG, Zhenkang LIN, Jun TANG, Cheng FAN, Kening SUN. A review of fault characteristics, fault diagnosis and identification for lithium-ion battery systems [J]. CIESC Journal, 2022, 73(8): 3394-3405. |
[10] | Xinjie ZHOU, Jianlin WANG, Xingcong AI, Enguang SUI, Rutong WANG. IDPC-RVM based online prediction of quality variables for multimode batch processes [J]. CIESC Journal, 2022, 73(7): 3120-3130. |
[11] | Jiahui REN, Yu LIU, Chao LIU, Lang LIU, Ying LI. Critical temperature prediction of working fluids using molecular fingerprints and topological indices [J]. CIESC Journal, 2022, 73(4): 1493-1500. |
[12] | Zirui WU, Rui SUN, Lingfeng SHI, Hua TIAN, Xuan WANG, Gequn SHU. A comparative and predictive study of the mixing rules for the vapor-liquid equilibria of CO2-based mixtures [J]. CIESC Journal, 2022, 73(4): 1483-1492. |
[13] | Libang LIU, Song YANG, Zhijian WANG, Xinxin HE, Wenlei ZHAO, Shoujun LIU, Wenguang DU, Jie MI. Prediction of coke quality based on improved WOA-LSTM [J]. CIESC Journal, 2022, 73(3): 1291-1299. |
[14] | Yunlong ZHOU, Qichao LIU. Analysis and calculation of friction resistance of gas-liquid flow in inclined riser pipe under fluctuating vibration [J]. CIESC Journal, 2022, 73(2): 643-652. |
[15] | Xiongfei XU, Penglong LIU, Wei ZHANG, Xin XU, Kan ZHANG, Junwen WANG. Multivariate nonlinear regression model of methanol to aromatics by two-state fixed bed for product prediction [J]. CIESC Journal, 2022, 73(2): 838-846. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||