CIESC Journal ›› 2020, Vol. 71 ›› Issue (2): 715-723.DOI: 10.11949/0438-1157.20190828
• Surface and interface engineering • Previous Articles Next Articles
Cheng FANG1,2(),Sheng YANG3,Yun WU1,2(),Hongwei ZHANG1,2,Jie WANG1,2,Lutian WANG1,2,Songze HAO1,2
Received:
2019-07-18
Revised:
2019-09-05
Online:
2020-02-05
Published:
2020-02-05
Contact:
Yun WU
方乘1,2(),杨盛3,吴云1,2(),张宏伟1,2,王捷1,2,王鲁天1,2,郝松泽1,2
通讯作者:
吴云
作者简介:
方乘(1994—),女,硕士研究生,基金资助:
CLC Number:
Cheng FANG, Sheng YANG, Yun WU, Hongwei ZHANG, Jie WANG, Lutian WANG, Songze HAO. Effect of floc surface morphology on membrane pollution prediction[J]. CIESC Journal, 2020, 71(2): 715-723.
方乘, 杨盛, 吴云, 张宏伟, 王捷, 王鲁天, 郝松泽. 絮体表面形态对膜污染预测的影响[J]. 化工学报, 2020, 71(2): 715-723.
Add to citation manager EndNote|Ris|BibTeX
Liquid | γLW/(mJ/m2) | γ+/(mJ/m2) | γ-/(mJ/m2) | γTOT/(mJ/m2) |
---|---|---|---|---|
pure water | 21.8 | 25.5 | 25.5 | 72.8 |
glycerine | 34.0 | 3.9 | 57.4 | 64.0 |
diiodomethane | 50.8 | 0 | 0 | 50.8 |
Table 1 Surface energy parameters of three testing agents at 20℃
Liquid | γLW/(mJ/m2) | γ+/(mJ/m2) | γ-/(mJ/m2) | γTOT/(mJ/m2) |
---|---|---|---|---|
pure water | 21.8 | 25.5 | 25.5 | 72.8 |
glycerine | 34.0 | 3.9 | 57.4 | 64.0 |
diiodomethane | 50.8 | 0 | 0 | 50.8 |
Floc morphology pH | Particle size/μm | Fractal dimension |
---|---|---|
5 | 114.1 | 2.1 |
6 | 112 | 2.14 |
7 | 118.8 | 2.13 |
8 | 112.5 | 2.05 |
Table 2 Particle size and fractal dimension of humic acid flocs at different pH
Floc morphology pH | Particle size/μm | Fractal dimension |
---|---|---|
5 | 114.1 | 2.1 |
6 | 112 | 2.14 |
7 | 118.8 | 2.13 |
8 | 112.5 | 2.05 |
Sample | pH | Contact angle/(?) | Zeta potential, ξ/mV | ||
---|---|---|---|---|---|
θw① | θG② | θD③ | |||
PVDF | 5 | 83.3±1.0 | 91.8±1.4 | 45.1±0.7 | -18.0±1.8 |
6 | 81.6±1.0 | 90.1±1.3 | 44.6±0.9 | -20.4±0.9 | |
7 | 77.3±2.9 | 87.4±2.0 | 43.4±1.9 | -22.0±1.4 | |
8 | 74.5±2.1 | 85.3±1.3 | 42.8±1.5 | -27.2±0.5 | |
HA | 5 | 56.5±0.6 | 62.7±0.7 | 20.0±0.9 | -20.9±0.8 |
6 | 52.2±1.0 | 61.3±0.5 | 24.4±0.8 | -33.3±0.5 | |
7 | 33.9±0.8 | 60.9±0.4 | 26.6±1.0 | -37.4±0.3 | |
8 | 29.4±0.7 | 60.0±0.4 | 25.4±0.6 | -40.9±0.9 |
Table 3 Contact angle and Zeta potential of PVDF film with humic acid at different pH
Sample | pH | Contact angle/(?) | Zeta potential, ξ/mV | ||
---|---|---|---|---|---|
θw① | θG② | θD③ | |||
PVDF | 5 | 83.3±1.0 | 91.8±1.4 | 45.1±0.7 | -18.0±1.8 |
6 | 81.6±1.0 | 90.1±1.3 | 44.6±0.9 | -20.4±0.9 | |
7 | 77.3±2.9 | 87.4±2.0 | 43.4±1.9 | -22.0±1.4 | |
8 | 74.5±2.1 | 85.3±1.3 | 42.8±1.5 | -27.2±0.5 | |
HA | 5 | 56.5±0.6 | 62.7±0.7 | 20.0±0.9 | -20.9±0.8 |
6 | 52.2±1.0 | 61.3±0.5 | 24.4±0.8 | -33.3±0.5 | |
7 | 33.9±0.8 | 60.9±0.4 | 26.6±1.0 | -37.4±0.3 | |
8 | 29.4±0.7 | 60.0±0.4 | 25.4±0.6 | -40.9±0.9 |
Sample | pH | γ+/(mJ/m2) | γ-/ (mJ/m2) | γAB/ (mJ/m2) | γLW/ (mJ/m2) | γTOT/(mJ/m2) | ?GSWS/(mJ/m2) |
---|---|---|---|---|---|---|---|
PVDF | 5 | 2.73 | 16.64 | 13.47 | 36.96 | 50.43 | -17.17 |
6 | 2.47 | 17.57 | 13.18 | 37.22 | 50.40 | -16.04 | |
7 | 2.33 | 21.45 | 14.15 | 37.86 | 52.01 | -10.30 | |
8 | 2.12 | 23.81 | 14.22 | 38.17 | 52.39 | -7.00 | |
HA | 5 | 0.31 | 28.61 | 5.92 | 47.78 | 53.70 | -4.69 |
6 | 0.26 | 34.13 | 5.97 | 46.36 | 52.34 | 5.23 | |
7 | 0.97 | 62.98 | 15.65 | 45.57 | 61.21 | 38.26 | |
8 | 1.07 | 68.11 | 17.10 | 46.01 | 63.11 | 42.51 |
Table 4 Surface tension parameters of PVDF film and humic acid at different pH
Sample | pH | γ+/(mJ/m2) | γ-/ (mJ/m2) | γAB/ (mJ/m2) | γLW/ (mJ/m2) | γTOT/(mJ/m2) | ?GSWS/(mJ/m2) |
---|---|---|---|---|---|---|---|
PVDF | 5 | 2.73 | 16.64 | 13.47 | 36.96 | 50.43 | -17.17 |
6 | 2.47 | 17.57 | 13.18 | 37.22 | 50.40 | -16.04 | |
7 | 2.33 | 21.45 | 14.15 | 37.86 | 52.01 | -10.30 | |
8 | 2.12 | 23.81 | 14.22 | 38.17 | 52.39 | -7.00 | |
HA | 5 | 0.31 | 28.61 | 5.92 | 47.78 | 53.70 | -4.69 |
6 | 0.26 | 34.13 | 5.97 | 46.36 | 52.34 | 5.23 | |
7 | 0.97 | 62.98 | 15.65 | 45.57 | 61.21 | 38.26 | |
8 | 1.07 | 68.11 | 17.10 | 46.01 | 63.11 | 42.51 |
pH | ||||
---|---|---|---|---|
5 | -326.77 | -1311.48 | 13.11 | -1625.15 |
6 | -340.79 | -481.34 | 16.82 | -805.33 |
7 | -361.97 | 3767.87 | 49.35 | 3455.20 |
8 | -354.68 | 4572.75 | 57.10 | 4275.17 |
Table 5 Interaction energy of PVDF film-humic acid(PVDF-HA) in very close contact at different pH
pH | ||||
---|---|---|---|---|
5 | -326.77 | -1311.48 | 13.11 | -1625.15 |
6 | -340.79 | -481.34 | 16.82 | -805.33 |
7 | -361.97 | 3767.87 | 49.35 | 3455.20 |
8 | -354.68 | 4572.75 | 57.10 | 4275.17 |
Sample | pH | ||||
---|---|---|---|---|---|
PVDF-rough flocs (λ=0.02,n=10) | 5 | -26.82 | -102.15 | 12.43 | -116.54 |
6 | -26.72 | -35.39 | 21.79 | -40.33 | |
7 | -27.50 | 266.32 | 26.40 | 265.23 | |
8 | -27.82 | 336.22 | 36.25 | 344.64 | |
PVDF-rough flocs (λ=0.02,n=20) | 5 | -16.73 | -40.94 | 11.09 | -46.58 |
6 | -16.39 | -12.64 | 19.87 | -9.17 | |
7 | -16.68 | 87.79 | 24.39 | 95.52 | |
8 | -17.07 | 120.08 | 32.95 | 135.96 | |
PVDF-rough flocs (λ=0.04,n=40) | 5 | -4.38 | -24.69 | 3.31 | -25.75 |
6 | -5.44 | -6.55 | 5.59 | -6.40 | |
7 | -5.52 | 48.19 | 6.71 | 49.38 | |
8 | -5.66 | 62.25 | 9.26 | 65.85 |
Table 6 Interaction energy of PVDF film-rough floc at very close contact at different pH
Sample | pH | ||||
---|---|---|---|---|---|
PVDF-rough flocs (λ=0.02,n=10) | 5 | -26.82 | -102.15 | 12.43 | -116.54 |
6 | -26.72 | -35.39 | 21.79 | -40.33 | |
7 | -27.50 | 266.32 | 26.40 | 265.23 | |
8 | -27.82 | 336.22 | 36.25 | 344.64 | |
PVDF-rough flocs (λ=0.02,n=20) | 5 | -16.73 | -40.94 | 11.09 | -46.58 |
6 | -16.39 | -12.64 | 19.87 | -9.17 | |
7 | -16.68 | 87.79 | 24.39 | 95.52 | |
8 | -17.07 | 120.08 | 32.95 | 135.96 | |
PVDF-rough flocs (λ=0.04,n=40) | 5 | -4.38 | -24.69 | 3.31 | -25.75 |
6 | -5.44 | -6.55 | 5.59 | -6.40 | |
7 | -5.52 | 48.19 | 6.71 | 49.38 | |
8 | -5.66 | 62.25 | 9.26 | 65.85 |
1 | Bergamasco R, Konradt-Moraes L C, Vieira M F, et al. Performance of a coagulation-ultrafiltration hybrid process for water supply treatment[J]. Chemical Engineering Journal, 2011, 166: 483-489. |
2 | Dickhout J M, Moreno Y, Biesheuvel P M, et al. Produced water treatment by membranes: a review from acolloidal perspective[J]. Journal of Colloid and Interface Science, 2017, 487: 523-534. |
3 | Muhamad M S, Salim M R, Lau W J, et al. A review on bisphenol A occurrences, health effects and treatment process via membrane technology for drinking water[J]. Environmental Science and Pollution Research, 2016, 23: 11549-11567. |
4 | Gao W, Liang H, Ma J, et al. Membrane fouling control in ultrafiltration technology for drinking water production: a review[J]. Desalination, 2011, 272: 1-8. |
5 | Lai C H, Chou Y C, Yeh H H. Assessing the interaction effects of coagulation pretreatment and membrane material on UF fouling control using HPSEC combined with peak-fitting[J]. Journal of Membrane Science, 2015, 474: 207-214. |
6 | Snyder S A, Adham S, Redding A M, et al. Role of membranes and activated carbonin the removal of endocrine disruptors and pharmaceuticals[J]. Desalination, 2007, 202: 156-181. |
7 | Exall K N, Vanloon G W. Using coagulants to remove organic matter[J]. American Water Works Association, 2000, 92: 93-102 |
8 | 郜玉楠, 王信之, 宗子翔, 等. 混凝-超滤短流程工艺膜污染特性及防治研究[J]. 水处理技术, 2017, (3): 78-81. |
Gao Y N, Wang X Z, Zong Z X, et al. Study on membrane pollution characteristicsand prevention of coagulation-ultrafiltration short process[J]. Water Treatment Technology, 2017, (3): 78-81. | |
9 | Chen L, Tian Y, Cao C Q, et al. Interaction energy evaluation of soluble microbial products (SMP) on different membrane surfaces: role of the reconstructed membrane topology[J]. Water Research, 2012, 46: 2693-2704. |
10 | 张冬, 董岳, 周东菊, 等. 基于XDLVO理论的超滤膜污染机理研究[J]. 中国给水排水, 2016, 32(21): 66-70. |
Zhang D, Dong Y, Zhou D J, et al. Study on fouling mechanism of ultrafiltration membrane based on XDLVO theory[J]. China Water and Wastewater, 2016, 32(21): 66-70. | |
11 | Brant J A, Childress A E. Assessing short-range membrane-colloid interactions using surface energetics[J]. Journal of Membrane Science, 2002, 203: 257-273. |
12 | Shen C, Wang F, Li B, et al. Application of DLVO energy map to evaluate interactions between spherical colloids and rough surfaces[J]. Langmuir, 2012, 28: 14681-14692. |
13 | Hoek E M V, Agarwal G K. Extended DLVO interactions between spherical particles and rough surfaces[J]. Journal of Colloid and Interface Science, 2006, 298: 50-58. |
14 | Cai X, Zhang M, Yang L, et al. Quantification of interfacial interactions between a rough sludge floc and membrane surface in a membrane bioreactor[J]. Journal of Colloid and Interface Science, 2017, 490: 710-718. |
15 | Wu W, Giese R F, van Oss C J. Stability versus flocculation of particle suspensions inwater - correlation with the extended DLVO approach for aqueous systems, compared with classical DLVO theory[J]. Colloids and Surfaces B-Biointerfaces, 1999, 14: 47-55. |
16 | van Oss C J. Acid-base interfacial interactions in aqueous media[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 1993, 78: 1-49. |
17 | Kuehnl W, Piry A, Kaufmann V, et al. Impact of colloidal interactions on the flux in cross-flow microfiltration of milk at different pH values: a surface energy approach[J]. Journal of Membrane Science, 2010, 352: 107-115. |
18 | Kim S, Hoek E M V. Interactions controlling biopolymer fouling of reverse osmosis membranes[J]. Desalination, 2007, 202: 333-342. |
19 | Zhao L, Shen L, He Y, et al. Influence of membrane surface roughness on interfacial interactions with sludge flocs in a submerged membrane bioreactor[J]. Journal of Colloid and Interface Science, 2015, 446: 84-90. |
20 | Gourley L, Britten M, Gauthier S F, et al. Characterization of adsorptive fouling on ultrafiltration membranes by peptides mixtures using contact angle measurements[J]. Journal of Membrane Science, 1994, 97: 283-289. |
21 | 梁华杰. 分形理论在混凝中的应用研究[D]. 武汉: 武汉科技大学, 2006. |
Liang H J. Application of fractal theory in coagulation[D]. Wuhan: Wuhan University of Science and Technology, 2006 | |
22 | Hoek E M V, Bhattacharjee S, Elimelech M. Effect of membrane surface roughness on colloid-membrane DLVO interactions[J]. Langmuir, 2003, 19: 4836-4847. |
23 | Bhattacharjee S, Ko C H, Elimelech M. DLVO interaction between rough surfaces[J]. Langmuir, 1998, 14: 3365-3375. |
24 | Lenhof A M. Contributions of surface features to the electrostatic properties of rough colloidal particles[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 1994, 87: 49-59. |
25 | Cai X, Yang L, Wang Z, et al. Influences of fractal dimension of membrane surface on interfacial interactions related to membrane fouling in a membrane bioreactor[J]. Journal of Colloid and Interface Science, 2017, 500: 79-87. |
26 | Chen J, Lin H, Shen L, et al. Realization of quantifying interfacial interactions between a randomly rough membrane surface and a foulant particle[J]. Bioresource Technology, 2017, 226: 220-228. |
27 | 寇朝卫, 张干伟, 沈舒苏, 等. 基于XDLVO理论分析物理化学相互作用对纳滤膜有机污染影响[J]. 水处理技术, 2017, (3): 32-39. |
Kou C W, Zhang G W, Shen S S, et al. Analysis of physicochemical interaction on oganic pollution of nanofiltration membranes based on XDLVO theory[J]. Water Treatment Technology, 2017, (3): 32-39. | |
28 | Nashida S, Verliefde A R D, Vicki C, et al. Assessment of physicochemical interactions in hollow fibre ultrafiltration membrane by contact angle analysis[J]. Journal of Membrane Science, 2012, 403/404: 32-40. |
29 | Wang L, Miao R, Wang X, et al. Fouling behavior of typical organic foulants in polyvinylidene fluoride ultrafiltration membranes: characterization from microforces[J]. Environmental Science & Technology, 2013, 47: 3708-3714. |
30 | 高欣玉, 纵瑞强, 王平, 等. xDLVO理论解析微滤膜海藻酸钠污染中pH影响机制[J]. 中国环境科学, 2014, 34: 958-965. |
Gao X Y, Zong R Q, Wang P, et al. XDLVO theory to analyse the mechanism of pH effect in sodium alginate pollution of microfiltration membrane[J]. China Environmental Science, 2014, 34: 958-965. | |
31 | 姚淑娣, 高欣玉, 郭本华, 等. XDLVO理论解析钙离子对腐殖酸反渗透膜污染的影响机制[J]. 环境科学, 2012, 33: 1884-1890. |
Yao S D, Gao X Y, Guo B H, et al. XDLVO theory to analyse the mechanism of Ca2+ influencing humic acid reverse osmosis membrane pollution[J]. Environmental Science, 2012, 33: 1884-1890. |
[1] | Junfeng LU, Huaiyu SUN, Yanlei WANG, Hongyan HE. Molecular understanding of interfacial polarization and its effect on ionic liquid hydrogen bonds [J]. CIESC Journal, 2023, 74(9): 3665-3680. |
[2] | Siqi WANG, Tianyu GU, Xianfu CHEN, Tong WANG, Jia LI, Wei KE, Xiaofeng LI, Yiqun FAN. Study on separation characteristics and membrane fouling mechanism of ceramic membrane for clarification of Eucommia ulmoides leaves extract [J]. CIESC Journal, 2023, 74(3): 1113-1125. |
[3] | Tongpeng LU, Xiaolin PAN, Hongfei WU, Yu LI, Haiyan YU. Effect of organic flocculant on settling performance of iron-bearing minerals and its adsorption mechanism [J]. CIESC Journal, 2022, 73(9): 4122-4132. |
[4] | TANG Heli, ZHANG Bing, HUANG Dongmei, SHEN Yu, GAO Xu, SHI Wenxin. Advances in membrane fouling analysis based on XDLVO theory [J]. CIESC Journal, 2021, 72(3): 1230-1241. |
[5] | Nan SU, Yinan WU, Yinyee TAN, Lihua JIN, Chong ZHANG, Aikawa SHIMPEI, Hasunuma TOMOHISA, Kondo AKIHIKO, Xinhui XING. Comparative omics study of Spirulinaplatensis mutants based on ARTP mutagenesis breeding system [J]. CIESC Journal, 2021, 72(12): 6298-6310. |
[6] | Da TENG, Tielin LI, Ang LI, Liansuo AN, Guoqing SHEN, Shiping ZHANG. Experimental analysis of low pressure water permeability of single channel ceramic membrane tube [J]. CIESC Journal, 2020, 71(S1): 261-271. |
[7] | Xuehui ZHAO, Xiaole LI, Yang LIU, Yan HU, Qing XU, Hongwei ZHANG. Effect of pH control of KMnO4 solution on physicochemical properties and fouling behavior of PVDF membrane [J]. CIESC Journal, 2020, 71(5): 2401-2412. |
[8] | Ziyi YUAN, Hua FAN, Deyin HOU, Kai WANG, Jun WANG. Effects of sodium dodecyl sulfate in DCMD process [J]. CIESC Journal, 2019, 70(4): 1455-1463. |
[9] | Jianglin WU, Zhaohui ZHANG, Liang WANG, Bin ZHAO, Tengfei LI, Mengmeng CHEN. Analysis of anti-fouling performance of wider spacer RO membrane module [J]. CIESC Journal, 2019, 70(4): 1446-1454. |
[10] | Lanhe ZHANG, Mingshuang ZHANG, Jingbo GUO, Yanping JIA, Zheng LI, Zicheng CHEN. Transformation of Fe3+ and its effect on anoxic sludge flocculation in A2O process [J]. CIESC Journal, 2019, 70(3): 1089-1098. |
[11] | XIA Hongtao, ZOU Siyu, XIAO Jie. Numerical simulation of shear-thinning droplet impacting on randomly rough surfaces [J]. CIESC Journal, 2019, 70(2): 634-645. |
[12] | Songze HAO, Hongwei ZHANG, Yun WU, Jie WANG. Study on treatment of biological catalytic filter and membrane fouling with bimetallic catalyst as filter media [J]. CIESC Journal, 2019, 70(11): 4377-4386. |
[13] | DU Jiao, SUN Zongying, GUAN Yueping, ZHANG Zhi, LI Tao, XU Guoli, FAN Qingqian. Removal of chromium-containing wastewater by integration treatment of magnetic flocculation and HGMS magnetic-fluid extraction [J]. CIESC Journal, 2018, 69(8): 3509-3516. |
[14] | LI Lixin, LIU Wanmeng, MA Fang. Research advances in compound bioflocculant [J]. CIESC Journal, 2018, 69(10): 4139-4147. |
[15] | DONG Chang, GAO Qijun, LÜ Xiaolong, JIA Wei. Intensify direct contact membrane distillation process by membrane aeration [J]. CIESC Journal, 2017, 68(5): 1913-1920. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||