CIESC Journal ›› 2020, Vol. 71 ›› Issue (S1): 441-447.DOI: 10.11949/0438-1157.20191082
• Energy and environmental engineering • Previous Articles Next Articles
Jie ZHANG1(),Liping PANG1(
),Hongquan QU2,Tianbo WANG3
Received:
2019-10-07
Revised:
2019-11-06
Online:
2020-04-25
Published:
2020-04-25
Contact:
Liping PANG
通讯作者:
庞丽萍
作者简介:
张洁(1996—),女,博士研究生,基金资助:
CLC Number:
Jie ZHANG, Liping PANG, Hongquan QU, Tianbo WANG. Multi-condition thermal models of avionics pod using stochastic configuration network[J]. CIESC Journal, 2020, 71(S1): 441-447.
张洁, 庞丽萍, 曲洪权, 王天博. 基于随机配置网络的机载电子吊舱多工况热模型[J]. 化工学报, 2020, 71(S1): 441-447.
实验工况 | 模拟舱设定 温度/℃ | 吊舱设备 状态 | 环控系统 状态 |
---|---|---|---|
高温贮存 | 70 | 关 | 关 |
高温工作 | 70 | 开 | 开 |
低温贮存 | -55 | 关 | 关 |
低温故障 | -55 | 开 | 关 |
低温工作 | -55 | 开 | 开 |
Table 1 Condition setting
实验工况 | 模拟舱设定 温度/℃ | 吊舱设备 状态 | 环控系统 状态 |
---|---|---|---|
高温贮存 | 70 | 关 | 关 |
高温工作 | 70 | 开 | 开 |
低温贮存 | -55 | 关 | 关 |
低温故障 | -55 | 开 | 关 |
低温工作 | -55 | 开 | 开 |
指标 | E1 | E2 | E3 | E4 | E5 |
---|---|---|---|---|---|
最大误差/℃ | 3.512 | 1.106 | 1.676 | 2.076 | 0.860 |
RMSE/℃ | 1.287 | 0.507 | 0.990 | 1.070 | 0.506 |
Table 2 Prediction result under whole process of multi-condition
指标 | E1 | E2 | E3 | E4 | E5 |
---|---|---|---|---|---|
最大误差/℃ | 3.512 | 1.106 | 1.676 | 2.076 | 0.860 |
RMSE/℃ | 1.287 | 0.507 | 0.990 | 1.070 | 0.506 |
1 | 庞利娥, 蒋福根. 一种机载电子吊舱热环境设计与分析[J]. 航天电子对抗, 2013, 29(4): 55-58. |
Pang L E, Jiang F G. Thermal environment design and analysis of the aircraft electronic pod [J]. Aerospace Electronic Warfare, 2013, 29(4): 55-58. | |
2 | 王志强. 机载光电吊舱热特性分析[J]. 电光与控制, 2012, 19(8): 70-73. |
Wang Z Q. Analysis on thermal characteristics of airborne electro-optical pod [J]. Electronics Optics & Control, 2012, 19(8): 70-73. | |
3 | Atkey W A, Fiterman C J. High efficiency aircraft cabin air supply cooling system: US7121100B2 [P].2006. |
4 | Bender D. Integration of exergy analysis into model-based design and evaluation of aircraft environmental control systems [J]. Energy, 2017, 137: 739-751. |
5 | Chang C W, Dinh N T. Classification of machine learning frameworks for data-driven thermal fluid models [J]. International Journal of Thermal Sciences, 2018, 135: 559-579. |
6 | Suryanarayana G, Lago J, Geysen D, et al. Thermal load forecasting in district heating networks using deep learning and advanced feature selection methods [J]. Energy, 2018, 157: 141-149. |
7 | Gunasekar N, Mohanraj M, Velmurugan V. Artificial neural network modeling of a photovoltaic-thermal evaporator of solar assisted heat pumps [J]. Energy, 2015, 93: 908-922. |
8 | Adewole B Z, Abidakun O A, Asere A A. Artificial neural network prediction of exhaust emissions and flame temperature in LPG (liquefied petroleum gas) fueled low swirl burner [J]. Energy, 2013, 61(6): 606-611. |
9 | Dhanuskodi R, Kaliappan R, Suresh S, et al. Artificial neural networks model for predicting wall temperature of supercritical boilers [J]. Soft Computing, 2009, 13(3): 291-305. |
10 | Tian Z, Qian C, Gu B, et al. Electric vehicle air conditioning system performance prediction based on artificial neural network [J]. Applied Thermal Engineering, 2015, 89: 101-114. |
11 | Korteby Y, Mahdi Y, Azizou A, et al. Implementation of an artificial neural network as a PAT tool for the prediction of temperature distribution within a pharmaceutical fluidized bed granulator [J]. European Journal of Pharmaceutical Sciences, 2016, 88: 219-232. |
12 | Starkov S O, Lavrenkov Y N. Prediction of the moderator temperature field in a heavy water reactor based on a cellular neural network [J]. Nuclear Energy & Technology, 2017, 3(2): 133-140. |
13 | 刘曙光, 郑崇勋, 刘明远. 前馈神经网络中的反向传播算法及其改进: 进展与展望[J]. 计算机科学, 1996, 23(1): 76-79. |
Liu S G, Zheng C X, Liu M Y. Back propagation algorithm in feedforward neural networks and its improvement: progress and prospects [J]. Computer Science, 1996, 23(1): 76-79. | |
14 | 陈格. 人工神经网络技术发展综述[J]. 中国科技信息, 2009, (17): 88-89. |
Chen G. Summary of the research and development of the artificial neural network [J]. Chinese Science and Technology Information, 2009, (17): 88-89. | |
15 | 丛爽, 王怡雯. 随机神经网络发展现状综述[J]. 控制理论与应用, 2004, 21(6): 975-980. |
Cong S, Wang Y W. Survey of current progress in random neural network [J]. Control Theory & Applications, 2004, 21(6): 975-980. | |
16 | 乔俊飞, 李凡军, 杨翠丽. 随机权神经网络研究现状与展望[J]. 智能系统学报, 2016, 11(6): 758-767. |
Qiao J F, Li F J, Yang C L. Review and prospect on neural networks with random weights [J]. CAAI Transactions on Intelligent Systems, 2016, 11(6): 758-767. | |
17 | Pascanu R, Mikolov T, Bengio Y. On the difficulty of training recurrent neural networks [C]// Proceedings of the 30th International Conference on Machine Learning. USA: ICML, 2013: 1310-1318. |
18 | 康芹, 李世武, 郭建利, 等. 热网络法概论[J]. 工业加热, 2006, 35(5): 19-22. |
Kang Q, Li S W, Guo J L, et al. The thermal network method outline [J]. Industrial Heating, 2006, 35(5): 19-22. | |
19 | Schmidt W F, Kraaijveld M A, Duin R P W. Feed forward neural networks with random weights [C]// Proceedings of 11th IAPR International Conference on Pattern Recognition Methodology and Systems. Netherlands: Hague, 1992: 1-4. |
20 | Li M, Wang D. Insights into randomized algorithms for neural networks: practical issues and common pitfalls [J]. Information Sciences, 2017, 382/383: 170-178. |
21 | Wang D, Li M. Stochastic configuration networks: fundamentals and algorithms [J]. IEEE Transactions on Cybernetics, 2017, 47(10): 3466-3479. |
22 | Wang D, Li M. Robust stochastic configuration networks with kernel density estimation for uncertain data regression [J]. Information Sciences, 2017, 412/413: 210-222. |
23 | Wang D, Cui C. Stochastic configuration networks ensemble with heterogeneous features for large-scale data analytics [J]. Information Sciences, 2017, 417: 55-71. |
24 | Rong A, Liu M, Pang L, et al. Kinetics study of gas pollutant adsorption and thermal desorption on silica gel [J]. Applied Sciences, 2017, 7(6): 609. |
25 | 毕小平, 王普凯, 周国印. 基于集总参数法的坦克稳态热分析模型[J]. 装甲兵工程学院学报, 2012, 26(3): 25-29. |
Bi X P, Wang P K, Zhou G Y. A thermal analysis model based on lumped parameter for tank stable working conditions [J]. Journal of Academy of Armored Force Engineering, 2012, 26(3): 25-29. | |
26 | 兰志勇, 魏雪环, 李虎如, 等. 基于集总参数热网络法的永磁同步电机温度场分析[J]. 电气工程学报, 2017, 12(1): 17-21, 32. |
Lan Z Y, Wei X H, Li H R, et al. Thermal analysis of PMSM based on lumped parameter thermal network method [J]. Journal of Electrical Engineering, 2017, 12(1): 17-21, 32. | |
27 | Harrington P. Machine Learning in Action [M]. USA: Manning Publications, 2012. |
28 | 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016. |
Zhou Z H. Machine Learning [M]. Beijing: Tsinghua University Press, 2016. | |
29 | Scardapane S, Wang D, Uncini A. Bayesian random vector functional-link networks for robust data modeling[J]. IEEE Transactions on Cybernetics, 2018, 48(7): 2049-2059. |
30 | Chai T, Draxler R R. Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature [J]. Geoscientific Model Development, 2014, 7(3): 1247-1250. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 169
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 476
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||