CIESC Journal ›› 2020, Vol. 71 ›› Issue (S1): 436-440.DOI: 10.11949/0438-1157.20191083

• Energy and environmental engineering • Previous Articles     Next Articles

Thermal management of airborne integrated environmental control system

Desheng MA1(),Liping PANG1(),Xiaodong MAO2,Sujun DONG1   

  1. 1.School of Aviation Science and Engineering, Beihang University, Beijing 100191, China
    2.School of Aero-engine, Shenyang Aerospace University, Shenyang 110136, Liaoning, China
  • Received:2019-10-07 Revised:2019-10-14 Online:2020-04-25 Published:2020-04-25
  • Contact: Liping PANG

机载综合环控系统的热管理

马德胜1(),庞丽萍1(),毛晓东2,董素君1   

  1. 1.北京航空航天大学航空科学与工程学院,北京 100191
    2.沈阳航空航天大学航空发动机学院,辽宁 沈阳 110136
  • 通讯作者: 庞丽萍
  • 作者简介:马德胜(1995—),男,硕士研究生, madesheng@buaa.edu.cn
  • 基金资助:
    国家重点研发计划项目(2017YFB1201100);辽宁省“兴辽英才计划”基金项目(XLYC1802092)

Abstract:

Using fuel as the main heat sink, and introducing liquid PAO and R134a as auxiliary heat sink, a new scheme for thermal management of environmental control system was proposed. The air compression refrigeration subsystem and the high-temperature PAO subsystem use air-PAO heat exchanger as the connection point and are coupled into the thermal management subsystem of cockpit and electronic cabin 1. The cryogenic PAO subsystem and the evaporator compression refrigeration cycle are coupled to the thermal management subsystem of the electronic compartment 2. The simulation models of main components such as air-liquid heat exchanger and liquid-liquid evaporator/condenser are established by combining mathematical calculation with computer modeling and simulation. The results show that under certain air inlet temperature and pressure conditions, fuel as the main heat sink can absorb a lot of heat, and the complementary heat of each subsystem can meet the temperature control of the cockpit and the electronic cabin, to ensure its stable and efficient operation.

Key words: thermal management, airborne cockpit and electronic cabin, simulation, heat sink, model, heat transfer

摘要:

利用燃油作为主要热沉,同时引入液体PAO与R134a作为辅助热沉,提出了一种环控系统热管理的新方案。空气压缩制冷子系统与高温PAO子系统以空气-PAO换热器为连接点,耦合为座舱与电子舱室1的热管理子系统;低温PAO子系统与蒸发压缩制冷循环以蒸发器为连接点,耦合为电子舱室2的热管理子系统。采用数学理论计算与计算机建模仿真研究相结合的方法,建立了空气-液体换热器、液-液蒸发器/冷凝器等主要元件的仿真模型,对环控系统进行性能分析。结果表明,在一定的引气温度和压力条件下,燃油作为主要热沉可以吸收大量的热量,同时各子系统的热量互补能够满足驾驶舱与电子舱的温度控制,保证其稳定、高效的运行。

关键词: 热管理, 机载座舱与电子舱, 仿真, 热沉, 模型, 传热

CLC Number: