CIESC Journal ›› 2020, Vol. 71 ›› Issue (1): 68-80.DOI: 10.11949/0438-1157.20191225
• Reviews and monographs • Previous Articles Next Articles
Haihua PAN1,3(),Ruikang TANG2,3()
Received:
2019-10-23
Revised:
2019-10-29
Online:
2020-01-05
Published:
2020-01-05
Contact:
Ruikang TANG
通讯作者:
唐睿康
作者简介:
潘海华(1975—),男,博士,副教授,基金资助:
CLC Number:
Haihua PAN, Ruikang TANG. Information transfer and transformation in bio/biomimetic-mineralization[J]. CIESC Journal, 2020, 71(1): 68-80.
潘海华, 唐睿康. 生物矿化及仿生矿化中的信息传递和转化[J]. 化工学报, 2020, 71(1): 68-80.
Add to citation manager EndNote|Ris|BibTeX
Fig.6 Free energy profiles for adsorption of D- and L-Asp on [101] step A and step B (a); Snapshots of stable configurations in adsorbed state at free energy minimum(b)[12]
1 | Poliakoff M, Licence P. Sustainable technology: green chemistry[J]. Nature, 2007, 450(7171): 810-812. |
2 | Lowenstam H, Weiner S. On Biomineralization[M]. USA: Oxford University Press, 1989: 1-49. |
3 | 金涌, 程易, 颜彬航. 化学反应工程的前世、今生与未来[J].化工学报, 2013, 64(1): 34-43. |
Jin Y, Cheng Y, Yan B H. Past, present and future of chemical reaction engineering[J]. CIESC Journal, 2013, 64(1): 34-43. | |
4 | 胡英, 刘洪来. 分子工程和化学工程[J]. 化学进展, 1995, 7(3): 235-249. |
Hu Y, Liu H L. Molecular engineering and chemical engineering[J]. Prog. Chem., 1995, 7(3): 235-249. | |
5 | Park C, Fenter P, Zhang Z, et al. Structure of the fluorapatite (100)-water interface by high-resolution X-ray reflectivity[J]. Am. Mineral., 2004, 89(11/12): 1647-1654. |
6 | Pareek A, Torrelles X, Angermund K, et al. Structure of interfacial water on fluorapatite (100) surface[J]. Langmuir, 2008, 24(6): 2459-2464. |
7 | Wilson E E, Awonusi A, Morris M D, et al. Highly ordered interstitial water observed in bone by nuclear magnetic resonance[J]. J. Bone Miner. Res., 2005, 20(4): 625-634. |
8 | Pan H, Tao J, Wu T, et al. Molecular simulation of water behaviors on crystal faces of hydroxyapatite[J]. Front. Chem. China, 2007, 2(2): 156-163. |
9 | Arsic J, Kaminski D, Poodt P, et al. Liquid ordering at the Brushite-{010}-water interface[J]. Phys. Rev. B, 2004, 69(24): 1-4. |
10 | Chu Y S, Lister T E, Cullen W G, et al. Commensurate water monolayer at the RuO2 (110) /water interface[J]. Phys. Rev. Lett., 2001, 86(15): 3364-3367. |
11 | Arsic J, Kaminski D M, Radenovic N, et al. Thickness-dependent ordering of water layers at the NaCl(100) surface[J]. J. Chem. Phys., 2004, 120(20): 9720-9724. |
12 | Jiang W, Pan H, Zhang Z, et al. Switchable chiral selection of aspartic acids by dynamic states of brushite[J]. J. Am. Chem. Soc., 2017, 139(25): 8562-8569. |
13 | Heberling F, Trainor T P, Lützenkirchen J, et al. Structure and reactivity of the calcite-water interface[J]. J. Colloid Interface Sci., 2011, 354(2): 843-857. |
14 | Imada H, Kimura K, Onishi H. Water and 2-propanol structured on calcite (104) probed by frequency-modulation atomic force microscopy[J]. Langmuir, 2013, 29(34): 10744-10751. |
15 | Fenter P, Kerisit S, Raiteri P, et al. Is the calcite-water interface understood? Direct comparisons of molecular dynamics simulations with specular X-ray reflectivity data[J]. J. Phys. Chem. C, 2013, 117(10): 5028-5042. |
16 | Wang Y, Von Euw S, Fernandes F M, et al. Water-mediated structuring of bone apatite[J]. Nat. Mater., 2013, 12(12): 1144-1153. |
17 | Drouet C, Aufray M, Rollin-Martinet S, et al. Nanocrystalline apatites: the fundamental role of water[J]. Am. Mineral., 2018, 103(4): 550-564. |
18 | Abrams C, Bussi G. Enhanced sampling in molecular dynamics using metadynamics, replica-exchange, and temperature-acceleration[J]. Entropy, 2014, 16(1): 163-199. |
19 | Tracey J, Miyazawa K, Spijker P, et al. Understanding 2D atomic resolution imaging of the calcite surface in water by frequency modulation atomic force microscopy[J]. Nanotechnology, 2016, 27(41): 415709. |
20 | Zhang Z, Wu T, Wang Q, et al. Impact of interfacial high-density water layer on accurate estimation of adsorption free energy by Jarzynski s equality[J]. J. Chem. Phys., 2014, 140(3): 034706. |
21 | Dove P M, Czank C A. Crystal chemical controls on the dissolution kinetics of the isostructural sulfates: celestite, anglesite, and barite[J]. Geochim. Cosmochim. Acta, 1995, 59(10): 1907-1915. |
22 | Piana S, Jones F, Gale J D. Assisted desolvation as a key kinetic step for crystal growth[J]. J. Am. Chem. Soc., 2006, 128(41): 13568-13574. |
23 | Pan H, Tao J, Xu X, Tang R. Adsorption processes of Gly and Glu amino acids on hydroxyapatite surfaces at the atomic level[J]. Langmuir, 2007, 23(17): 8972-8981. |
24 | Zhang Z, Pan H, Tang R. Molecular dynamics simulations of the adsorption of amino acids on the hydroxyapatite {100} -water interface[J]. Front. Mater. Sci. China, 2008, 2(3): 239-245. |
25 | Hu Y Y, Rawal A, Schmidt-Rohr K. Strongly bound citrate stabilizes the apatite nanocrystals in bone[J]. Proc. Natl. Acad. Sci. U. S. A., 2010, 107(52): 22425-22429. |
26 | Jiang W, Pan H, Cai Y, et al. Atomic force microscopy reveals hydroxyapatite-citrate interfacial structure at the atomic level[J]. Langmuir, 2008, 24(21): 12446-12451. |
27 | Jiang W, Chu X, Wang B, et al. Biomimetically triggered inorganic crystal transformation by biomolecules: a new understanding of biomineralization[J]. J. Phys. Chem. B, 2009, 113(31): 10838-10844. |
28 | Gajjeraman S, Narayanan K, Hao J, et al. Matrix macromolecules in hard tissues control the nucleation and hierarchical assembly of hydroxyapatite[J]. J. Biol. Chem., 2007, 282(2): 1193-1204. |
29 | Weiner S. Biomineralization: a structural perspective[J]. J. Struct. Biol., 2008, 163(3): 229-234. |
30 | Beniash E, Simmer J P, Margolis H C. The effect of recombinant mouse amelogenins on the formation and organization of hydroxyapatite crystals in vitro[J]. J. Struct. Biol., 2005, 149(2): 182-190. |
31 | Le Norcy E, Kwak S Y, Wiedemann-Bidlack F B, et al. Potential role of the amelogenin N-terminus in the regulation of calcium phosphate formation in vitro[J]. Cells Tissues Organs, 2011, 194(2/3/4): 188-193. |
32 | Tao J, Shin Y, Jayasinha R, et al. The energetic basis for hydroxyapatite mineralization by amelogenin variants provides insights into the origin of amelogenesis imperfecta[J]. Proc. Natl. Acad. Sci. U. S. A., 2019, 116(28): 13867-13872. |
33 | Fang P A, Conway J F, Margolis H C, et al. Hierarchical self-assembly of amelogenin and the regulation of biomineralization at the nanoscale[J]. Proc. Natl. Acad. Sci. U. S. A., 2011, 108(34): 14097-14102. |
34 | Du C, Falini G, Fermani S, et al. Supramolecular assembly of amelogenin nanospheres into birefringent microribbons[J]. Science, 2005, 307(5714): 1450-1454. |
35 | Shaw W J, Campbell A A, Paine M L, et al. The COOH terminus of the amelogenin, LRAP, is oriented next to the hydroxyapatite surface[J]. J. Biol. Chem., 2004, 279(39): 40263-40266. |
36 | Moradian-Oldak J, Bouropoulos N, Wang L, et al. Analysis of self-assembly and apatite binding properties of amelogenin proteins lacking the hydrophilic C-terminal[J]. Matrix Biol., 2002, 21(2): 197-205. |
37 | Chen X, Wang Q, Shen J, et al. Adsorption of leucine-rich amelogenin protein on hydroxyapatite (001) surface through —COO— claws[J]. J. Phys. Chem. C, 2007, 111(3): 1284-1290. |
38 | Salazar V S, Gamer L W, Rosen V. BMP signalling in skeletal development, disease and repair[J]. Nat. Rev. Endocrinol., 2016, 12(4): 203-221. |
39 | Dong X, Wang Q, Wu T, Pan H. Understanding adsorption-desorption dynamics of BMP-2 on hydroxyapatite (001) surface[J]. Biophys. J., 2007, 93(3): 750-759. |
40 | Shen J W, Wu T, Wang Q, et al. Molecular simulation of protein adsorption and desorption on hydroxyapatite surfaces[J]. Biomaterials, 2008, 29(5): 513-532. |
41 | Mann S, Hannington J P, Williams R J P. Phospholipid vesicles as a model system for biomineralization[J]. Nature, 1986, 324(6097): 565-567. |
42 | Fricke M, Volkmer D. Crystallization of calcium carbonate beneath insoluble monolayers: suitable models of mineral-matrix interactions in biomineralization? [J]. Top. Curr. Chem., 2007, 270: 1-41. |
43 | Aizenberg J, Black A J, Whitesides G M. Oriented growth of calcite controlled by self-assembled monolayers of functionalized alkanethiols supported on gold and silver[J]. J. Am. Chem. Soc., 1999, 121(18): 4500-4509. |
44 | Travaille A M, Kaptijn L, Verwer P, et al. Highly oriented self-assembled monolayers as templates for epitaxial calcite growth[J]. J. Am. Chem. Soc., 2003, 125(38): 11571-11577. |
45 | Hartgerink J D, Beniash E, Stupp S I. Self-assembly and mineralization of peptide-amphiphile nanofibers[J]. Science, 2001, 294(5547): 1684-1688. |
46 | Spoerke E D, Anthony S G, Stupp S I. Enzyme directed templating of artificial bone mineral[J]. Adv. Mater., 2009, 21(4): 425-430. |
47 | Kim Y Y, Ganesan K, Yang P, et al. An artificial biomineral formed by incorporation of copolymer micelles in calcite crystals[J]. Nat. Mater., 2011, 10(11): 890-896. |
48 | Cho K R, Kim Y Y, Yang P, et al. Direct observation of mineral-organic composite formation reveals occlusion mechanism[J]. Nat. Commun., 2016, 7: 10187. |
49 | Loo R W, Goh M C. Potassium ion mediated collagen microfibril assembly on mica[J]. Langmuir, 2008, 24(23): 13276-13278. |
50 | Kang S, Li H, Huynh T, et al. Molecular mechanism of surface-assisted epitaxial self-assembly of amyloid-like peptides[J]. ACS Nano, 2012, 6(10): 9276-9282. |
51 | Chen J, Zhu E, Liu J, et al. Building two-dimensional materials one row at a time: avoiding the nucleation barrier[J]. Science, 2018, 362(6419): 1135-1139. |
52 | Orme C, Noy A, Wierzbicki A, et al. Formation of chiral morphologies through selective binding of amino acids to calcite surface steps[J]. Nature, 2001, 411(6839): 775-779. |
53 | Wu Y J, Tsai T W T, Chan J C C. Asymmetric crystal morphology of apatite induced by the chirality of dicarboxylate additives[J]. Cryst. Growth Des., 2012, 12(2): 547-549. |
54 | Jiang W, Pacella M S, Athanasiadou D, et al. Chiral acidic amino acids induce chiral hierarchical structure in calcium carbonate[J]. Nat. Commun., 2017, 8(1): 15066. |
55 | De Yoreo J J, Gilbert P U P A, Sommerdijk N A J M, et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments[J]. Science, 2015, 349(6247): aaa6760. |
56 | De Yoreo J J, Vekilov P G. Principles of crystal nucleation and growth[J]. Rev. Mineral. Geochemistry, 2003, 54(1): 57-93. |
57 | Hu Q, Nielsen M H, Freeman C L, et al. The thermodynamics of calcite nucleation at organic interfaces: classical vs. non-classical pathways[J]. Faraday Discuss., 2012, 159: 509-523. |
58 | Wang B, Liu P, Liu Z, et al. Biomimetic construction of cellular shell by adjusting the interfacial energy[J]. Biotechnol. Bioeng., 2014, 111(2): 386-395. |
59 | Jiang S, Chen Y, Pan H, et al. Faster nucleation at lower pH: amorphous phase mediated nucleation kinetics[J]. Phys. Chem. Chem. Phys., 2013, 15(30): 12530-12533. |
60 | Jiang S, Pan H, Chen Y, et al. Amorphous calcium phosphate phase-mediated crystal nucleation kinetics and pathway[J]. Faraday Discuss., 2015, 179: 451-461. |
61 | Wang Y N, Jiang S, Pan H, et al. Less is more: silicate in the crystallization of hydroxyapatite in simulated body fluids[J]. CrystEngComm, 2016, 18(3): 379-383. |
62 | Chen Y, Gu W, Pan H, et al. Stabilizing amorphous calcium phosphate phase by citrate adsorption[J]. CrystEngComm, 2014, 16(10): 1864-1867. |
63 | Jiang S, Jin W, Wang Y N, et al. Effect of the aggregation state of amorphous calcium phosphate on hydroxyapatite nucleation kinetics[J]. RSC Adv., 2017, 7(41): 25497-25503. |
64 | Ding H, Pan H, Xu X, et al. Toward a detailed understanding of magnesium ions on hydroxyapatite crystallization inhibition[J]. Cryst. Growth Des., 2014, 14(2): 763-769. |
65 | Jin W, Liu Z, Wu Y, et al. Synergic effect of Sr2+ and Mg2+ on the stabilization of amorphous calcium phosphate[J]. Cryst. Growth Des., 2018, 18: 6054-6060. |
66 | Lupulescu A I, Rimer J D. In situ imaging of silicalite-1 surface growth reveals the mechanism of crystallization[J]. Science, 2014, 344(6185): 729-732. |
67 | Teng H H, Dove P M, Orme C A, et al. Thermodynamics of calcite growth: baseline for understanding biomineral formation[J]. Science, 1998, 282(5389): 724-727. |
68 | Piana S, Jones F, Gale J D. Aspartic acid as a crystal growth catalyst[J]. CrystEngComm, 2007, 9(12): 1187-1191. |
69 | Jiang W, Pan H, Tao J, et al. Dual roles of borax in kinetics of calcium sulfate dihydrate formation[J]. Langmuir, 2007, 23(9): 5070-5076. |
70 | Baumgartner J, Dey A, Bomans P H H, et al. Nucleation and growth of magnetite from solution[J]. Nat. Mater., 2013, 12(4): 310-314. |
71 | Liu Z, Pan H, Zhu G, et al. Realignment of nanocrystal aggregates into single crystals as a result of inherent surface stress[J]. Angew. Chem. Int. Ed., 2016, 55(41): 12836-12840. |
72 | Banfield J F, Welch S A, Zhang H, et al. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products[J]. Science, 2000, 289(5480): 751-754. |
73 | Li D, Nielsen M H, Lee J R I, et al. Direction-specific interactions control crystal growth by oriented attachment[J]. Science, 2012, 336(6084): 1014-1018. |
74 | Tao J, Pan H, Zeng Y, et al. Roles of amorphous calcium phosphate and biological additives in the assembly of hydroxyapatite nanoparticles[J]. J. Phys. Chem. B, 2007, 111(47): 13410-13418. |
75 | Zhu G, Yao S, Zhai H, et al. Evolution from classical to non-classical aggregation-based crystal growth of calcite by organic additive control[J]. Langmuir, 2016, 32(35): 8999-9004. |
76 | Wang L, Guan X, Yin H, et al. Mimicking the self-organized microstructure of tooth enamel[J]. J. Phys. Chem. C, 2008, 112(15): 5892-5899. |
77 | Yu H P, Zhu Y J, Lu B Q. Dental enamel-mimetic large-sized multi-scale ordered architecture built by a well controlled bottom-up strategy[J]. Chem. Eng. J., 2019, 360: 1633-1645. |
78 | Fan Y, Sun Z, Moradian-Oldak J. Controlled remineralization of enamel in the presence of amelogenin and fluoride[J]. Biomaterials, 2009, 30(4): 478-483. |
79 | Ruan Q, Zhang Y, Yang X, et al. An amelogenin-chitosan matrix promotes assembly of an enamel-like layer with a dense interface[J]. Acta Biomater., 2013, 9(7): 7289-7297. |
80 | Li L, Mao C, Wang J, et al. Bio-inspired enamel repair via glu-directed assembly of apatite nanoparticles: an approach to biomaterials with optimal characteristics[J]. Adv. Mater., 2011, 23(40): 4695-4701. |
81 | Shao C, Jin B, Mu Z, et al. Repair of tooth enamel by a biomimetic mineralization frontier ensuring epitaxial growth[J]. Sci. Adv., 2019, 5: eaaw9569. |
82 | Olszta M J, Cheng X, Jee S S, et al. Bone structure and formation: a new perspective[J]. Mater. Sci. Eng. R, 2007, 58(3/4/5): 77-116. |
83 | Niu L, Jee S E, Jiao K, et al. Collagen intrafibrillar mineralization as a result of the balance between osmotic equilibrium and electroneutrality[J]. Nat. Mater., 2016, 16(3): 370-378. |
84 | Shao C, Zhao R, Jiang S, et al. Citrate improves collagen mineralization via interface wetting: a physicochemical understanding of biomineralization control[J]. Adv. Mater., 2018, 30(8): 1704876. |
85 | Xiao C, Li M, Wang B, et al. Total morphosynthesis of biomimetic prismatic-type CaCO3 thin films[J]. Nat. Commun., 2017, 8(1): 1398. |
86 | Mao L B, Gao H L, Yao H B, et al. Synthetic nacre by predesigned matrix-directed mineralization[J]. Science, 2016, 354(6308): 107-110. |
[1] | Xiaoqing ZHOU, Chunyu LI, Guang YANG, Aifeng CAI, Jingyi WU. Icing kinetics and mechanism of droplet impinging on supercooled corrugated plates with different curvature [J]. CIESC Journal, 2023, 74(S1): 141-153. |
[2] | Lisen BI, Bin LIU, Hengxiang HU, Tao ZENG, Zhuorui LI, Jianfei SONG, Hanming WU. Molecular dynamics study on evaporation modes of nanodroplets at rough interfaces [J]. CIESC Journal, 2023, 74(S1): 172-178. |
[3] | Hongxin YU, Shuangquan SHAO. Simulation analysis of water crystallization process [J]. CIESC Journal, 2023, 74(S1): 250-258. |
[4] | Junfeng LU, Huaiyu SUN, Yanlei WANG, Hongyan HE. Molecular understanding of interfacial polarization and its effect on ionic liquid hydrogen bonds [J]. CIESC Journal, 2023, 74(9): 3665-3680. |
[5] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[6] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[7] | Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust [J]. CIESC Journal, 2023, 74(9): 3931-3945. |
[8] | Dian LIN, Guomei JIANG, Xiubin XU, Bo ZHAO, Dongmei LIU, Xu WU. Preparation and drag reduction effect of silicon-based liquid-like anti-crude-oil-adhesion coatings [J]. CIESC Journal, 2023, 74(8): 3438-3445. |
[9] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[10] | Yu FU, Xingchong LIU, Hanyu WANG, Haimin LI, Yafei NI, Wenjing ZOU, Yue LEI, Yongshan PENG. Research on F3EACl modification layer for improving performance of perovskite solar cells [J]. CIESC Journal, 2023, 74(8): 3554-3563. |
[11] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[12] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[13] | Ben ZHANG, Songbai WANG, Ziya WEI, Tingting HAO, Xuehu MA, Rongfu WEN. Capillary liquid film condensation and heat transfer enhancement driven by superhydrophilic porous metal structure [J]. CIESC Journal, 2023, 74(7): 2824-2835. |
[14] | Ming DONG, Jinliang XU, Guanglin LIU. Molecular dynamics study on heterogeneous characteristics of supercritical water [J]. CIESC Journal, 2023, 74(7): 2836-2847. |
[15] | Yuanchao LIU, Xuhao JIANG, Ke SHAO, Yifan XU, Jianbin ZHONG, Zhuan LI. Influence of geometrical dimensions and defects on the thermal transport properties of graphyne nanoribbons [J]. CIESC Journal, 2023, 74(6): 2708-2716. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||