1 |
Hassan C M , Peppas N A . Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods[J]. Adv. Polym. Sci., 2000, 153: 37-65.
|
2 |
Baker M I , Walsh S P , Schwartz Z , et al . A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications[J]. J. Biomed. Mater. Res. Part B, 2012, 100B: 1451-1457.
|
3 |
Kobayashi M , Toguchida J , Oka M . Preliminary study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus [J]. Biomaterials, 2003, 24: 639-647.
|
4 |
Kobayashi M , Chang Y-S , Oka M . A two year in vivo study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus [J]. Biomaterials, 2005, 26: 3243-3248.
|
5 |
Holloway J L , Lowman A M , Palmese G R . Mechanical evaluation of poly(vinyl alcohol)-based fibrous composites as biomaterials for meniscal tissue replacement[J]. Acta Biomaterialia, 2010, 6: 4716-4724.
|
6 |
Gonzalez J S , Alvarez V A . Mechanical properties of poly vinyl alcohol / hydroxyapatite cryogel as potential artificial cartilage [J]. Journal of the Mechanical Hehavior of Biomedical Materials, 2014, 34: 47-56.
|
7 |
Vedadghavami A , Minooei F , Mohammadi M H , et al . Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications[J]. Acta Biomaterialia, 2017, 62: 42-63.
|
8 |
Teodorescu M , Bercea M , Morariu S . Biomaterials of PVA and PVP in medical and pharmaceutical applications: perspectives and challenges [J]. Biotechnology Advances, 2019, 37: 109-131.
|
9 |
王娜, 王园园, 陈兴波, 等 . 聚乙烯醇/壳聚糖复合水凝胶的物理化学性质[J].中国科学:化学, 2014, 44: 1591-1598.
|
|
Wang N , Wang Y Y , Chen X B , et al . The physical-chemistry properties of poly(vinyl alcohol)/chitosan composite hydrogels [J]. Scientia Sinica Chimica, 2014, 44: 1591-1598.
|
10 |
Li X , Qin H , Zhang X , Guo Z . Triple-network hydrogels with high strength, low friction and self-healing by chemical-physical crosslinking[J]. Journal of Colloid and Interface Science, 2019, 556: 549-556.
|
11 |
Bi S , Wang P , Hu S , et al . Construction of physical-crosslink chitosan/PVA double-network hydrogel with surface mineralization for bone repair[J]. Carbohydrate Polymers, 2019, 224: 115-176.
|
12 |
Ghorpade V S , Dias R J , Mali K K , et al . Citric acid crosslinked carboxymethylcellulose-polyvinyl alcohol hydrogel films for extended release of water soluble basic drugs [J]. J. Drug Deliv. Sci. Tec., 2019, 52: 421-430.
|
13 |
Osmałek T , Froelich A , Tasarek S . Application of gellan gum in pharmacy and medicine[J]. Int. J. Pharmaceutics, 2014, 466: 328-340.
|
14 |
Ahmad S , Ahmad M , Manzoor K , et al . A review on latest innovations in natural gums based hydrogels: preparations & applications [J]. Int. J. Biol. Macromol., 2019, 136: 870-890.
|
15 |
Leonea G , Consumi M , Pepi S , et al . Enriched gellan gum hydrogel as visco-supplement[J]. Carbohydr. Polym., 2020, 227: 115347.
|
16 |
Jana S , Sen K K . Gellan gum/PVA interpenetrating network micro-beads for sustained drug delivery[J]. Materials Today: Proceedings, 2019, 11: 614-619.
|
17 |
Aadil K R , Nathani A , Sharma C S , et al . Investigation of poly(vinyl) alcohol-gellan gum based nanofiber as scaffolds for tissue engineering applications[J]. J. Drug Deliv. Sci. Tec., 2019, 54: 101-276.
|
18 |
Choi J H , Choi O K , Lee J , et al . Evaluation of double network hydrogel of poloxamer-heparin/gellan gum for bone marrow stem cells delivery carrier[J]. Colloids Surfaces B: Biointerfaces, 2019, 181: 879-889.
|
19 |
Vieira S , Morais A S , Garet E , et al . Self-mineralizing Ca-enriched methacrylated gellan gum beads for bone tissue engineering[J]. Acta Biomater., 2019, 93: 74-85.
|
20 |
Lee H , Rukmanikrishnan B , Lee J . Rheological, morphological, mechanical, and water-barrier properties of agar/gellan gum/montmorillonite clay composite films[J]. Int. J. Biol. Macromol., 2019, 141: 538-544.
|
21 |
Totosaus A , Pérez-Chabela M L . Textural properties and microstructure of low-fat and sodium-reduced meat batters formulated with gellan gum and dicationic salts[J]. LWT Food Sci. Technology, 2009, 42: 563-569.
|
22 |
Wang F , Wen Y , Bai T C . The composite hydrogels of polyvinyl alcohol–gellan gum-Ca2+ with improved network structure and mechanical property [J]. Materials Science and Engineering C, 2016, 69: 268-275.
|
23 |
Wang F , Wen Y , Bai T C . Thermal behavior of polyvinyl alcohol-gellan gum-Al3+ composite hydrogels with improved network structure and mechanical property [J]. J. Therm. Anal. Calorim., 2017, 127: 2447-2457.
|
24 |
Hoffman A S . Hydrogels for biomedical applications[J]. Advanced Drug Delivery Reviews, 2012, 64: 18-23.
|
25 |
Appel E A , Loh X J , Jones S T , et al . Ultra high water-content supramolecular hydrogels exhibiting multistimuli responsiveness[J]. J. Am. Chem. Soc., 2012, 134: 11767-11773.
|
26 |
Ratner B D , Hoffman A S . Blood-compatibility-water-content relationships for radiation-grafted hydrogels[J]. J. Polym. Sci. Polym. Symp., 2007, 66: 364-375.
|
27 |
Liu L M , Wang B H , Gao Y , et al . Chitosan fibers enhanced gellan gum hydrogels with superior mechanical properties and water-holding capacity[J]. Carbohyd. Polym., 2013, 97: 152-158.
|
28 |
Mahajan H S , Gattani S G . Gellan gum based microparticles of metoclopromide hydrochloride for intranasal delivery: development and evaluation [J]. Chem. Pharm. Bull., 2009, 57: 388-392.
|
29 |
Yuguchi Y , Urakawa H , Kitamura S ,et al . The sol-gel transition of gellan gum aqueous solutions in the presence of various metal salts. Physical chemistry and industrial application of gellan gum [J]. Progress in Colloid and Polymer Science, 1999, 114: 41-47.
|
30 |
Liang J J , Huang Y , Zhang L , et al . Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites[J]. Adv. Funct. Mater., 2009, 19: 2297-2302.
|
31 |
Miyoshi E , Takaya T , Nishinari K . Rheological and thermal studies of gel-sol transition in gellan gum aqueous solutions[J]. Carbohyd. Polym., 1996, 30: 109-119.
|
32 |
Ricciardi R , Gaillet C , Ducouret G , et al . Investigation of the relationships between the chain organization and rheological properties of atactic poly(vinyl alcohol) hydrogels[J]. Polymer, 2003, 44: 3375-3380.
|
33 |
Pelletier S , Hubert P , Payan E , et al . Amphilic derivatives of sodium alginate and hyaluronate for cartilage repair: rheological properties[J]. J. Biomed. Mater. Res., 2001, 54: 102-108.
|
34 |
Peppas N A , Merrill E W . Crystallization kinetics of poly(vinyl alcohol)[J]. J. Appl. Polym. Sci., 1976, 20: 1457-1465.
|
35 |
Tόth K , Aigner Z , Wellinger K , et al . Thermoanalytical investigation of different hip joint arthropathies[J]. Thermochim. Acta, 2010, 506: 94-97.
|
36 |
Vyazovkin S , Burnham A K , Criado J M , et al . ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data[J]. Thermochim. Acta, 2011, 520: 1-19.
|
37 |
Schott H . Swelling kinetics of polymers[J]. J. Macromol. Sci. B, 1992, 31: 1-9.
|