CIESC Journal ›› 2019, Vol. 70 ›› Issue (5): 1999-2006.DOI: 10.11949/j.issn.0438-1157.20181192
• Material science and engineering,nanotechnology • Previous Articles Next Articles
Hao XU1(),Kaifeng GU2,Yunhao LI1,Yong ZHOU2,3(),Congjie GAO2,3
Received:
2018-10-12
Revised:
2019-02-17
Online:
2019-05-05
Published:
2019-05-05
Contact:
Yong ZHOU
许浩1(),顾凯锋2,李韵浩1,周勇2,3(),高从堦2,3
通讯作者:
周勇
作者简介:
<named-content content-type="corresp-name">许浩</named-content>(1992—),男,硕士研究生,<email>xh11936984@163.com</email>|周勇(1977—),男,博士,教授,<email>zhouy@zjut.edu.cn</email>
基金资助:
CLC Number:
Hao XU, Kaifeng GU, Yunhao LI, Yong ZHOU, Congjie GAO. Polyethersulfone ultrafiltration membrane with low molecular weight cut off[J]. CIESC Journal, 2019, 70(5): 1999-2006.
许浩, 顾凯锋, 李韵浩, 周勇, 高从堦. 低截留分子量聚醚砜超滤膜[J]. 化工学报, 2019, 70(5): 1999-2006.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181192
PES基膜 | PES/%(mass) | TMA%(mass) | DMAc%(mass) |
---|---|---|---|
P1 | 15 | 0 | 85 |
P2 | 15 | 1 | 84 |
P3 | 15 | 2 | 83 |
P4 | 15 | 3 | 82 |
P5 | 15 | 4 | 81 |
Table1 Composition of PES casting solution
PES基膜 | PES/%(mass) | TMA%(mass) | DMAc%(mass) |
---|---|---|---|
P1 | 15 | 0 | 85 |
P2 | 15 | 1 | 84 |
P3 | 15 | 2 | 83 |
P4 | 15 | 3 | 82 |
P5 | 15 | 4 | 81 |
PES基膜 | 水通量/(L/(m2·h)) | 接触角/(°) | 表面孔径/nm |
---|---|---|---|
P1 | 116.02±40 | 75.05±3 | 11.2 |
P2 | 149.53±30 | 55.36±1 | 14.9 |
P3 | 412.63±50 | 53.85±3 | 13.5 |
P4 | 624.9±150 | 64.45±1 | 15.2 |
P5 | 726.83±70 | 60.38±1 | 18.4 |
Table 2 Performance of PES base membrane with different TMA loading
PES基膜 | 水通量/(L/(m2·h)) | 接触角/(°) | 表面孔径/nm |
---|---|---|---|
P1 | 116.02±40 | 75.05±3 | 11.2 |
P2 | 149.53±30 | 55.36±1 | 14.9 |
P3 | 412.63±50 | 53.85±3 | 13.5 |
P4 | 624.9±150 | 64.45±1 | 15.2 |
P5 | 726.83±70 | 60.38±1 | 18.4 |
TMA concent/%(mass) | 元素含量/%(atom) | |||
---|---|---|---|---|
C(理论/实际) | O(理论/实际) | S(理论/实际) | O/C(理论/实际) | |
0 | 75/72.79 | 18.75/20.27 | 7.25/6.94 | 0.25/0.278 |
1 | 69.66/69.73 | 26.31/25.96 | 4.03/4.31 | 0.379/0.372 |
2 | 67.13/70.76 | 29.91/25.49 | 2.96/3.75 | 0.446/0.360 |
3 | 65.65/70.55 | 32.00/25.29 | 2.35/4.15 | 0.487/0.358 |
Table 3 Element composition of PES base membrane with different TMA concent
TMA concent/%(mass) | 元素含量/%(atom) | |||
---|---|---|---|---|
C(理论/实际) | O(理论/实际) | S(理论/实际) | O/C(理论/实际) | |
0 | 75/72.79 | 18.75/20.27 | 7.25/6.94 | 0.25/0.278 |
1 | 69.66/69.73 | 26.31/25.96 | 4.03/4.31 | 0.379/0.372 |
2 | 67.13/70.76 | 29.91/25.49 | 2.96/3.75 | 0.446/0.360 |
3 | 65.65/70.55 | 32.00/25.29 | 2.35/4.15 | 0.487/0.358 |
PVA concent/%(mass) | Rejection rate to different molecular weight PEGs,R/% | |||||
---|---|---|---|---|---|---|
10000 | 6000 | 4000 | 2000 | 1000 | 800 | |
0.02 | 87.14 | 86.44 | 80.04 | ? | ? | ? |
0.03 | 89.19 | 89.58 | 84.52 | ? | ? | ? |
0.05 | 97.32 | 94.95 | 87.70 | ? | ? | ? |
0.1 | 98.06 | 96.74 | 95.06 | 96.67 | 95.04 | 84.09 |
0.2 | 99.04 | 98.42 | 97.65 | 97.10 | 94.24 | 66.50 |
Table 4 PEG rejection rate of different PVA contents membranes
PVA concent/%(mass) | Rejection rate to different molecular weight PEGs,R/% | |||||
---|---|---|---|---|---|---|
10000 | 6000 | 4000 | 2000 | 1000 | 800 | |
0.02 | 87.14 | 86.44 | 80.04 | ? | ? | ? |
0.03 | 89.19 | 89.58 | 84.52 | ? | ? | ? |
0.05 | 97.32 | 94.95 | 87.70 | ? | ? | ? |
0.1 | 98.06 | 96.74 | 95.06 | 96.67 | 95.04 | 84.09 |
0.2 | 99.04 | 98.42 | 97.65 | 97.10 | 94.24 | 66.50 |
1 | Dasgupta J , Sikder J , Chakraborty S , et al . Re20181192tion of textile effluents by membrane based treatment techniques: a state of the art review[J]. Journal of Environmental Management, 2015, 147: 55-72. |
2 | Vincent-Vela M C , Álvarez-Blanco S , Lora-García J , et al . Application of several pretreatment technologies to a wastewater effluent of a petrochemical industry finally treated with reverse osmosis[J]. Desalination and Water Treatment, 2015, 55(13): 3653-3661. |
3 | 李庭, 熊华, 陈望华, 等 . 香蕉汁生产过程中褐变控制和超滤工艺的研究[J]. 食品研究与开发, 2008, 29(11): 100-103. |
Li T , Xiong H , Chen W H , et al . Study on browning control and ultrafiltration process in banana juice production [J]. Food Research and Development, 2008, 29(11): 100-103. | |
4 | 汪锰, 王湛, 李政雄 . 膜材料及其制备[M]. 北京: 化学工业出版社, 2003: 175-214. |
Wang M , Wang Z , Li Z X . Membrane Materials and Their Preparation[M]. Beijing: Chemical Industry Press, 2003: 175-214. | |
5 | Arthanareeswaran G , Latha C S , Mohan D , et al . Studies on cellulose acetate/low cyclic dimmer polysulfone blend ultrafiltration membranes and their applications[J]. Separation Science and Technology, 2006, 41(13): 2895-2912. |
6 | Rana D , Scheier B , Narbaitz R M , et al . Comparison of cellulose acetate (CA) membrane and novel CA membranes containing surface modifying macromolecules to remove pharmaceutical and personal care product micropollutants from drinking water[J]. Journal of Membrane Science, 2012, 409: 346-354. |
7 | Zhao Y F , Zhu L P , Yi Z , et al . Improving the hydrophilicity and fouling-resistance of polysulfone ultrafiltration membranes via surface zwitterionicalization 20181192ted by polysulfone-based triblock copolymer additive[J]. Journal of Membrane Science, 2013, 440: 40-47. |
8 | Breitbach L , Hinke E , Staude E . Heterogeneous functionalizing of polysulfone membranes[J]. Die Angewandte Makromolekulare Chemie: Applied Macromolecular Chemistry and Physics, 1991, 184(1): 183-196. |
9 | Ahmad A L , Abdulkarim A A , Ooi B S , et al . Recent development in additives modifications of polyethersulfone membrane for flux enhancement[J]. Chemical Engineering Journal, 2013, 223: 246-267. |
10 | Chang H H , Chen S C , Lin D J , et al . The effect of Tween-20 additive on the morphology and performance of PVDF membranes[J]. Journal of Membrane Science, 2014, 466: 302-312. |
11 | Pezeshk N , Narbaitz R M . More fouling resistant modified PVDF ultrafiltration membranes for water treatment[J]. Desalination, 2012, 287: 247-254. |
12 | Mondal M , De S . Characterization and antifouling properties of polyethylene glycol doped PAN-CAP blend membrane[J]. RSC Advances, 2015, 5(49): 38948-38963. |
13 | 邬智勇 . 原位聚合型阻燃尼龙6的制备、性能及应用研究[D]. 长沙: 湖南大学, 2011. |
Wu Z Y . Preparation, properties and application of flame retardant polyamide 6 by in-situ ploymerization[D]. Changsha: Hunan University, 2011. | |
14 | Yuan G , Xu Z , Wei Y . Characterization of PVDF-PFSA hollow fiber UF blend membrane with low-molecular weight cut-off [J]. Separation Science and Technology, 2009, 69(2): 141-148. |
15 | 董声雄, 龚琦 . 聚偏氟乙烯/聚醋酸乙烯酯共混小截留分子量超滤膜[J]. 化工学报, 2002, 53(11): 1212-1214. |
Dong S X , Gong Q . PVDF/PVAc blend ultrafiltration membrane with small molecular mass cut-off[J]. Journal of Chemical Industry and Engineering(China), 2002, 53 (11): 1212-1214. | |
16 | Hosseini S M , Gholami A , Madaeni S S , et al . Fabrication of (polyvinyl chloride/cellulose acetate) electrodialysis heterogeneous cation exchange membrane: characterization and performance in desalination process[J]. Desalination, 2012, 306: 51-59. |
17 | Anis S F , Lalia B S , Hashaikeh R . Controlling swelling behavior of poly (vinyl) alcohol via networked cellulose and its application as a reverse osmosis membrane [J]. Desalination, 2014, 336: 138-145. |
18 | 高嵩, 张守海, 杨大令, 等 . 低截留分子量PPES超滤膜的制备[J]. 功能高分子学报, 2008, 21(3): 317-321. |
Gao S , Zhang S H , Yang D L , et al . Preparation of ploy(phthalazinone ether sulfone) ultrafiltration membranes with low molecular weight cut-off[J]. Journal of Functional Polymer, 2008, 21(3): 317-321. | |
19 | Han R , Zhang S , Liu C , et al . Effect of NaA zeolite particle addition on poly (phthalazinone ether sulfone ketone) composite ultrafiltration (UF) membrane performance[J]. Journal of Membrane Science, 2009, 345(1/2): 5-12. |
20 | See-Toh Y H , Silva M , Livingston A . Controlling molecular weight cut-off curves for highly solvent stable organic solvent nanofiltration (OSN) membranes[J]. Journal of Membrane Science, 2008, 324(1/2): 220-232. |
21 | Peng F , Jiang Z , Hoek E M V . Tuning the molecular structure, separation performance and interfacial properties of poly (vinyl alcohol)–polysulfone interfacial composite membranes[J]. Journal of Membrane Science, 2011, 368(1/2): 26-33. |
22 | Peng F , Huang X , Jawor A , et al . Transport, structural, and interfacial properties of poly (vinyl alcohol)-polysulfone composite nanofiltration membranes[J]. Journal of Membrane Science, 2010, 353(1/2): 169-176. |
23 | 史凤娇 . 低截留分子量超滤膜对有机微污染物的截留效能与机制研究[D]. 哈尔滨: 哈尔滨工程大学, 2014. |
Shi F J . Rejection effet and mechanism of micro-organic pollutants by ultrafiltration with low molecular weight cut-off [D]. Harbin: Harbin Engineering University, 2014. | |
24 | 王姣, 张守海, 杨大令, 等 . 非溶剂添加剂对杂萘联苯聚醚砜超滤膜结构和性能的影响[J]. 膜科学与技术, 2008, 28(3): 50-53. |
Wang J , Zhang S H , Yang D L , et al . Effect of nonsolvent additives on configuration and performance of poly (phthalazinone ether sulfone) ultrafiltration membrane[J].Membrane Science and Technology, 2008, 28(3): 50-53. | |
25 | 陶杰 . 界面聚合制备小孔径复合超滤膜及其性能研究[D]. 杭州: 浙江理工大学, 2011. |
Tao J . Preparation and properties of small-pore composite ultrafiltration membranes by interfacial polymerization [D]. Hangzhou: Zhejiang University of Technology, 2011. | |
26 | Wang K , Matsuura T , Chung T , et al . The effects of flow angle and shear rate within the spinneret on the separation performance of poly (ethersulfone) (PES) ultrafiltration hollow fiber membranes[J]. Journal of Membrane Science, 2004, 240(1/2): 67-79. |
27 | 吴宗策, 郭玉阳, 梁松苗, 等 . 高性能聚醚砜/聚乙烯醇复合超滤膜的研究[J]. 水处理技术, 2016, (2): 51-55. |
Wu Z C , Guo Y Y , Liang S M , et al . Study on high performance PES/PVA composite ultrafiltration membrane [J]. Technology of Water Treatment, 2016, (2): 51-55. | |
28 | Bolto B , Tran T , Hoang M , et al . Crosslinked poly (vinyl alcohol) membranes[J]. Progress in Polymer Science, 2009, 34(9): 969-981. |
29 | Petersen R J . Composite reverse osmosis and nanofiltration membranes[J]. Journal of Membrane Science, 1993, 83(1): 81-150. |
30 | Dai W S , Barbari T A . Hydrogel membranes with mesh size asymmetry based on the gradient crosslinking of poly (vinyl alcohol)[J]. Journal of Membrane Science, 1999, 156(1): 67-79. |
31 | Yong S K , Hyo J K , Un Y K . Asymmetric membrane formation via immersion precipitation method(Ⅰ): Kinetic effect[J]. Journal of Membrane Science, 1991, 60(2/3): 219-232. |
32 | 冷云飞, 潘凯, 原涛, 等 . 聚砜超滤膜的表面化学改性[J]. 北京化工大学学报(自然科学版), 2009, 36(3): 65-70. |
Leng Y F , Pan K , Yuan T , et al . Surface chemical modification of a polysulfone membrane[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2009, 36(3): 65-70. | |
33 | 赵劲彤, 张学俊, 邸玉静 . 柠檬酸改性聚乙烯醇制备可生物降解膜的研究[J]. 塑料助剂, 2009, (6): 28-33. |
Zhao J T , Zhang X J , Di Y J . Study on the preparation of biodegradable film by citric acid modified polyvinyl alcohol [J]. Plastic Additives, 2009, (6): 28-33. | |
34 | Guo M , Wang S , Gu K , et al . Gradient cross-linked structure: towards superior PVA nanofiltration membrane performance[J]. Journal of Membrane Science, 2019, 569: 83-90. |
[1] | Yanpeng WU, Xiaoyu LI, Qiaoyang ZHONG. Experimental analysis on filtration performance of electrospun nanofibers with amphiphobic membrane of oily fine particles [J]. CIESC Journal, 2023, 74(S1): 259-264. |
[2] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[3] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[4] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[5] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
[6] | Kuikui HAN, Xianglong TAN, Jinzhi LI, Ting YANG, Chun ZHANG, Yongfen ZHANG, Hongquan LIU, Zhongwei YU, Xuehong GU. Four-channel hollow fiber MFI zeolite membrane for the separation of xylene isomers [J]. CIESC Journal, 2023, 74(6): 2468-2476. |
[7] | Hao GU, Fujian ZHANG, Zhen LIU, Wenxuan ZHOU, Peng ZHANG, Zhongqiang ZHANG. Desalination performance and mechanism of porous graphene membrane in temporal dimension under mechanical-electrical coupling [J]. CIESC Journal, 2023, 74(5): 2067-2074. |
[8] | Yongyao SUN, Qiuying GAO, Wenguang ZENG, Jiaming WANG, Yifei CHEN, Yongzhe ZHOU, Gaohong HE, Xuehua RUAN. Design and optimization of membrane-based integration process for advanced utilization of associated gases in N2-EOR oilfields [J]. CIESC Journal, 2023, 74(5): 2034-2045. |
[9] | Chenxin LI, Yanqiu PAN, Liu HE, Yabin NIU, Lu YU. Carbon membrane model based on carbon microcrystal structure and its gas separation simulation [J]. CIESC Journal, 2023, 74(5): 2057-2066. |
[10] | Lei WANG, Lei WANG, Yunlong BAI, Liuliu HE. Preparation of SA lithium ion sieve membrane and its adsorptive properties [J]. CIESC Journal, 2023, 74(5): 2046-2056. |
[11] | Rong WANG, Yonghong WANG, Xinru ZHANG, Jinping LI. Construction of 6FDA-based polyimide carbon molecular sieve membranes for gas separation and its application [J]. CIESC Journal, 2023, 74(4): 1433-1445. |
[12] | Yangguang LYU, Peipei ZUO, Zhengjin YANG, Tongwen XU. Triazine framework polymer membranes for methanol/n-hexane separation via organic solvent nanofiltration [J]. CIESC Journal, 2023, 74(4): 1598-1606. |
[13] | Ruiheng WANG, Pinjing HE, Fan LYU, Hua ZHANG. Parameter comparison and optimization of three solid-liquid separation methods for washed air pollution control residues from municipal solid waste incinerators [J]. CIESC Journal, 2023, 74(4): 1712-1723. |
[14] | Xiaoxuan WANG, Xiaohong HU, Yunan LU, Shiyong WANG, Fengxian FAN. Numerical simulation of flow characteristics in a rotating membrane filter [J]. CIESC Journal, 2023, 74(4): 1489-1498. |
[15] | Laiming LUO, Jin ZHANG, Zhibin GUO, Haining WANG, Shanfu LU, Yan XIANG. Simulation and experiment of high temperature polymer electrolyte membrane fuel cells stack in the 1—5 kW range [J]. CIESC Journal, 2023, 74(4): 1724-1734. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||