[1] |
Goodship V,Jacobs D K. Polyvinyl Alcohol: Materials, Processing and Applications[M]. US: Smithers Rapra Technology, 2009
|
[2] |
Turbak A F, Snyer F W, Sandberg K R. Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential [J]. J. Appl. Polym. Sci., 1983, 37: 815-827
|
[3] |
Herrick F W, Casebier R L, Hamilton J K, Sandberg K R. Microfibrillated cellulose: morphology and accessibility [J]. J. Appl. Polym. Sci., 1983, 37: 797-813
|
[4] |
Siró I, Plackett D. Microfibrillated cellulose and new nanocomposite materials: a review [J]. Cellulose, 2010, 17(3): 459-494
|
[5] |
Srithep Y, Turng L-S, Sabo R, Clemons C. Nanofibrillated cellulose (NFC) reinforced polyvinyl alcohol (PVOH) nanocomposites: properties, solubility of carbon dioxide, and foaming [J]. Cellulose, 2012, 19(4): 1209-1223
|
[6] |
Chinga-Carrasco G. Cellulose fibres, nanofibrils and microfibrils: the morphological sequence of MFC components from a plant physiology and fibre technology point of view [J]. Nanoscale Res. Lett., 2011, 6(1):417-426
|
[7] |
Li L, Shi H, Shi H S, Wang Q. Preparation of poly(vinyl alcohol) foam through thermal processing using water as blowing agent//Polymer Processing Society Americas[C]. Niagara Falls, Canada, 2012: 331-332
|
[8] |
Avella M, Cocca M, Errico M, Gentile G. Biodegradable PVOH-based foams for packaging applications [J]. J. Cell. Plast., 2011, 47(3): 271-281
|
[9] |
Avella M, Cocca M, Errico M, Gentile G. Polyvinyl alcohol biodegradable foams containing cellulose fibres [J]. J. Cell. Plast., 2012, 48(5): 459-470
|
[10] |
Park J S, Park J W, Ruckenstein E. A dynamic mechanical and thermal analysis of unplasticized and plasticized poly(vinyl alcohol)/ methylcellulose blends [J]. J. Appl. Polym. Sci., 2001, 80(10): 1825-1834
|
[11] |
Lu J, Wang T, Drzal L T. Preparation and properties of microfibrillated cellulose polyvinyl alcohol composite materials [J]. Compos. Part A: Appl. S., 2008, 39(5): 738-746
|
[12] |
Leung S N, Park C B, Xu D, Li H, Fenton R G. Computer simulation of bubble-grouth phenomena in foaming [J]. Ind. Eng. Chem. Res., 2006, 45(23): 7823-7831
|
[13] |
Zhang J, Rizvi G M, Park C B. Effects of wood fiber content on the rheological properties,crystallization behavior, and cell morphology of extruded wood fiber/HDPE composites [J]. BioResources, 2011, 6(4): 4979-4989
|
[14] |
Chandra A, Gong S, Yuan M, Turng L-S, Gramann P, Cordes H. Microstructure and crystallography in microcellular injection-molded polyamide-6 nanocomposite and neat resin [J]. Polym. Eng. Sci., 2005, 45(1): 52-61
|
[15] |
Finch C A. Poly (Vinyl Alcohol) Developments[M]. London: John Wiley & Sons, 1992
|
[16] |
Yuan M, Winardi A, Gong S, Turng L-S. Effects of nano- and micro-fillers and processing parameters on injection-molded microcellular composites [J]. Polym. Eng. Sci., 2005, 45(6): 773-788
|
[17] |
Ding W, Kuboki T, Koyama R, Park C B, Sain M. Solid-state foaming of cellulose nanofiber reinforced polylactic acid biocomposites// Society of Plastics Engineers Annual Technical Conference Technical Papers[C]. Boston, USA: Society of Plastics Engineers, 2011: Paper # PENG-11-2010-0595
|
[18] |
Wong A, Park C B. A visualization system for obsvering plastic foaming processes under shear stress [J]. Polym. Test., 2012, 31(3): 417-424
|
[19] |
Wong A, Park C B. The effects of extensional stresses on the foamability of polystyrene-talc composites blown with carbon dioxide [J]. Chem. Eng. Sci., 2012, 75: 49-62
|
[20] |
Wong A, Wijnands S F L, Kuboki T, Park C B. Mechanisms of nanoclay-enhanced plastic foaming processes: effects of nanoclay intercalation and exfoliation [J]. J. Nanopart. Res., 2013, 15(8): 1-15
|
[21] |
Kuboki T, Lee Y H, Park C B, Sain M. Mechanical properties and foaming behavior of cellulose fiber reinforced high-density polyethylene composites [J]. Polym. Eng. Sci., 2009, 49(11): 2179-2188
|
[22] |
Kuboki T. Foaming behavior of cellulose fiber-reinforced polypropylene composites in extrusion [J]. J. Cell. Plast., 2013, 50(2): 113-128
|