CIESC Journal ›› 2020, Vol. 71 ›› Issue (3): 1072-1079.DOI: 10.11949/0438-1157.20191474

• Process system engineering • Previous Articles     Next Articles

Regularization based functional link neural network and its applications to modeling complex chemical processes

Yanlin HE1,2(),Ye TIAN1,2,Xiangbai GU1,3,Yuan XU1,2(),Qunxiong ZHU1,2()   

  1. 1.College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
    2.Engineering Research Center of Ministry of Education, Beijing 100029, China
    3.Sinopec Engineering Group Co. , Ltd. , Beijing 100101, China
  • Received:2019-12-04 Revised:2019-12-14 Online:2020-03-05 Published:2020-03-05
  • Contact: Yuan XU,Qunxiong ZHU

基于正则化的函数连接神经网络研究及其复杂化工过程建模应用

贺彦林1,2(),田业1,2,顾祥柏1,3,徐圆1,2(),朱群雄1,2()   

  1. 1.北京化工大学信息科学与技术学院,北京 100029
    2.智能过程系统工程教育部研究中心,北京 100029
    3.中石化炼化(集团)股份有限公司,北京 100101
  • 通讯作者: 徐圆,朱群雄
  • 作者简介:贺彦林(1987—),男,博士,副教授,heyl@mail.buct.edu.cn
  • 基金资助:
    国家自然科学基金项目(61703027)

Abstract:

In the modeling of chemical process, due to the high dimensionality and non-linearity of the process data, the calculation amount is greatly increased and the modeling difficulty is increased. In order to solve this problem, a regularization based functional link neural network (RFLNN) is proposed. In the proposed RFLNN method, there are two salient features through using the regularization

method

on one hand, computing complexity and the amount of calculation are greatly reduced; on the other hand, the problem of local extreme values and over-fitting is effectively avoided. As a result, the performance in terms of accuracy and learning speed of functional neural network is much improved. In order to verify the effectiveness of the proposed RFLNN method, firstly, an UCI dataset called Real estate valuation is selected; then the proposed RFLNN method is used to develop a model for the complex production process of high density polyethylene (HDPE). Compared with the conventional functional link neural network(FLNN), simulation results of the selected UCI data and industrial data show that the proposed RFLNN can achieve not only fast convergence speed but also high accuracy in processing complex chemical process data.

Key words: neural network, regularization, process modeling, high density polyethylene

摘要:

在化工过程的建模中,由于过程数据的高维度和高非线性,导致计算量大幅提升和建模难度加大。为了解决这一问题,提出了一种基于正则化方法的函数连接神经网络模型(regularization based functional link neural network, RFLNN)。所提出的RFLNN方法里,通过使用正则化的方法对函数连接神经网络的权值进行优化,一方面大幅降低网络计算复杂度和计算量,另一方面极大程度上克服网络局部极值和过拟合的问题,以提高函数连接神经网络的学习速度和精度。为了验证所提出方法的有效性,首先采用UCI数据中Real estate valuation数据对其性能进行测试;随后将所提的方法应用于高密度聚乙烯(high density polyethylene,HDPE)复杂生产过程进行建模。UCI标准数据与工业数据的仿真结果表明,与传统FLNN对比,RFLNN在处理高维复杂化工过程数据时具有收敛速度快、建模精度高等特点。

关键词: 神经网络, 正则化, 过程建模, 高密度聚乙烯

CLC Number: