1 |
袁修干. 高性能军用机环境控制系统研究发展趋势的探讨[J]. 航空学报, 1999, 20(z1): 1-3.
|
|
Yuan X G. Developing trend discussion of environmental control system of high performance military aircraft [J]. Acta Aeronautica et Astronautica Sinica, 1999, 20(z1): 1-3.
|
2 |
朱春玲, 宁献文. 用于机载大功率电子设备的新型液冷环控系统的研究[J]. 南京航空航天大学学报, 2005, 37(2): 203-207.
|
|
Zhu C L, Ning X W. Liquid cooling system for high-powered avionics [J]. Journal of Nanjing University of Aeronautics & Astronautis, 2005, 37(2): 203-207.
|
3 |
彭明, 张雪平. 平流式冷凝器模拟计算及试验研究[J]. 制冷与空调, 2008, 22(1): 6-11.
|
|
Peng M, Zhang X P. Mathematical description and experimental investigation on parallel-flow type condenser [J]. Refrigeration and Air Conditioning, 2008, 22(1): 6-11.
|
4 |
彭雄兵. 我国汽车空调换热器的研究[D]. 北京: 清华大学, 1997: 7.
|
|
Peng X B. Research on heat exchanger of automotive air conditioning in China [D]. Beijing: Tsinghua University, 1997: 7.
|
5 |
Lui C W, Lee C K, Schwan E. Integrted environmental control system and liquid cooling system for F/A-18E/F aircraft [R]. SAE Paper 951400, 1995.
|
6 |
Baird D, Ferentions J. Application of MIL-C-87252 in F-22 liquid Cooling system [R]. SAE Paper 981543, 1998.
|
7 |
闫旭东, 宋保银, 赵枚, 等. 机载蒸发循环系统两相流换热特性实验研究[J]. 制冷与空调, 2008, 22(6): 7-11.
|
|
Yan X D, Song B Y, Zhao M, et al. Experimental investigation on the heat transfer characteristic of two-phase flow in an onboard vapor cycle system [J]. Refrigeration and Air Conditioning, 2008, 22(6): 7-11.
|
8 |
曹辉, 赵竞全. 机载蒸发制冷循环的稳态仿真[J]. 计算机仿真, 2007, 24(4): 40-42, 115.
|
|
Cao H, Zhao J Q. Steady-state simulation of vapor cycle system for aircraft environmental control system [J]. Computer Simulation, 2007, 24(4): 40-42, 115.
|
9 |
黄新松, 李文辉. 直升机用蒸发循环制冷系统设计计算与仿真[J]. 直升机技术, 2016, (4): 29-37.
|
|
Huang X S, Li W H. The calculation and simulation for helicopters refrigeration system [J]. Helicopter Technique, 2016, (4): 29-37.
|
10 |
寿荣中, 何慧珊. 飞行器环境控制[M]. 北京: 北京航空航天大学出版社, 2004.
|
|
Shou R Z, He H S. Environmental Control of Aircraft [M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 2004.
|
11 |
陈变蕊, 侯予, 刘秀芳, 等. 板翅式蒸发器液冷系统的实验研究[J]. 制冷学报, 2008, 2(2): 8-13.
|
|
Chen B R, Hou Y, Liu X F, et al. Experimental study on refrigerating system with plate-fin evaporation [J]. Journal of Refrigeration, 2008, 2(2): 8-13.
|
12 |
马兰, 李艳娜, 齐杜红. 基于AMESim的空-液热交换器仿真分析[J]. 航空科学技术, 2016, 27(12): 38-42.
|
|
Ma L, Li Y N, Qi D H. Simulation of air-liquid heat exchange based on AMESim [J]. Aeronautical Science & Technology, 2016, 27(12): 38-42.
|
13 |
余建祖. 换热器原理与设计[M]. 北京: 北京航空航天大学出版社, 2006.
|
|
Yu J Z. Heat Exchanger Theory and Design [M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 2006.
|
14 |
高峰, 袁修干. 高性能战斗机燃油热管理系统[J]. 北京航空航天大学学报, 2009, 35(11): 1353-1356.
|
|
Gao F, Yuan X G. Fuel thermal management system of high performance fighter aircraft [J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(11): 1353-1356.
|
15 |
丁顺利, 朱春玲, 张泉, 等. 环形散热器应用于液冷的数值研究[J]. 飞机设计, 2014, 34(1): 23-27.
|
|
Ding S L, Zhu C L, Zhang Q, et al. The analysis of applying circular radiators to liquid-cooled system [J]. Aircraft Design, 2014, 34(1): 23-27.
|
16 |
Aprea C, Renno C. Experimental analysis of a transfer function for an air cooled evaporator [J]. Appl. Therm. Eng., 2001, 21: 481-493.
|
17 |
Barnhart J, Peters J. An experimental investigation of entrained liquid carry-over from a serpentine evaporator [J]. Int. J. Refrigeration, 1995, 18: 343-354.
|
18 |
Emo S, Ervin J, Michalak T E, et al. Cycle-based vapor cycle system control and active charge management for dynamic airborne applications [R]. SAETechnical Paper, 2014.
|
19 |
Ghanekar M. Vapor cycle system for the F-22 raptor [R]. SAETechnical Paper, 2000.
|
20 |
Chen W, Zhou X X, Deng S M. Development of control method and dynamic model for multi-evaporator air conditioners (MEAC) [J]. Energy Convers. Manag., 2005, 46: 451-465.
|
21 |
陈流芳, 吴裕远, 张玉文, 等. 板翅式单元液氮中微膜热虹吸浅池沸腾的试验研究[J]. 西安交通大学学报, 1995, 29(5): 34-38.
|
|
Chen L F, Wu Y Y, Zhang Y W, et al. Experimental studies on the microfilm thermosyphon boiling heat transfer of a plate-fin unit in a shallow pool with liquid nitrogen [J]. Journal of Xi􀆳an Jiaotong University, 1995, 29(5): 34-38.
|
22 |
Tuo H F, Hrnjak P S. Flash gas bypass in mobile air conditioning system with R134a [J]. Int. J. Refrig. -Rev. Int. Froid, 2012, 35: 1869-1877.
|
23 |
Tuo H F. Flash gas bypass — a way to improve distribution of adiabatic two-phase refrigerant flow in headers of microchannel evaporators [D]. Illinois: University of Illinois, 2013.
|
24 |
Ablanque N, Oliet C, Rigola J, et al. Two-phase flow distribution in multiple parallel tubes [J]. Int. J. Therm. Sci., 2010, 49: 909-921.
|
25 |
Gossard J J, Han X, Ramalingam M, et al. Investigating the thermal-hydraulic performance of new refrigerant mixtures through numerical simulation of minichannel and microchannel evaporators [J]. App. Therm. Eng., 2013, 50: 1291-1298.
|
26 |
Jin D H. Investigation on refrigerant distribution in evaporator manifolds [D]. Maryland: University of Maryland, 2006.
|
27 |
Bowers C D, Mai H, Elbel S, et al. Refrigerant distribution effects on the performance of microchannel evaporators [C]// Int. Refrig. Air Conditioning Conf., 2010: 2173.
|
28 |
Kandlikar S G, Grande W J. Evolution of microchannel flow passages — thermohydraulic performance and fabrication technology [J]. Heat Transf. Eng., 2003, 24: 3-17.
|
29 |
Kandlikar S G. A roadmap for implementing minichannels in refrigeration and air-conditioning systems-current status and future directions [J]. Heat Transf. Eng., 2007, 28: 973-985.
|
30 |
Wu X M, Webb R L. Thermal and hydraulic analysis of a brazed evaporator [J]. Appl. Therm. Eng., 2002, 22: 1369-1390.
|