CIESC Journal ›› 2023, Vol. 74 ›› Issue (S1): 8-24.DOI: 10.11949/0438-1157.20230077
• Reviews and monographs • Previous Articles Next Articles
Huafu ZHANG1,2,3(), Lige TONG2, Zhentao ZHANG1,3(), Junling YANG1,3, Li WANG2, Junhao ZHANG4
Received:
2023-02-03
Revised:
2023-03-05
Online:
2023-09-27
Published:
2023-06-05
Contact:
Zhentao ZHANG
张化福1,2,3(), 童莉葛2, 张振涛1,3(), 杨俊玲1,3, 王立2, 张俊浩4
通讯作者:
张振涛
作者简介:
张化福(1987—),男,硕士,助理研究员,zhanghuafu@mail.ipc.ac.cn
基金资助:
CLC Number:
Huafu ZHANG, Lige TONG, Zhentao ZHANG, Junling YANG, Li WANG, Junhao ZHANG. Recent progress and development trend of mechanical vapor compression evaporation technology[J]. CIESC Journal, 2023, 74(S1): 8-24.
张化福, 童莉葛, 张振涛, 杨俊玲, 王立, 张俊浩. 机械蒸汽压缩蒸发技术研究现状与发展趋势[J]. 化工学报, 2023, 74(S1): 8-24.
序号 | 方程表达式 | 公式编号 |
---|---|---|
1 | (1) | |
2 | (2) | |
3 | (3) |
Table 1 Model equation of preheater
序号 | 方程表达式 | 公式编号 |
---|---|---|
1 | (1) | |
2 | (2) | |
3 | (3) |
序号 | 方程表达式 | 公式编号 |
---|---|---|
1 | (4) | |
2 | (5) | |
3 | (6) |
Table 2 Model equation of evaporator
序号 | 方程表达式 | 公式编号 |
---|---|---|
1 | (4) | |
2 | (5) | |
3 | (6) |
序号 | 方程表达式 | 公式编号 |
---|---|---|
1 | (7) | |
2 | (8) | |
3 | (9) | |
4 | (10) | |
5 | (11) |
Table 3 Model equation of compressor
序号 | 方程表达式 | 公式编号 |
---|---|---|
1 | (7) | |
2 | (8) | |
3 | (9) | |
4 | (10) | |
5 | (11) |
序号 | 方程表达式 | 公式编号 |
---|---|---|
1 | (12) | |
2 | (13) | |
3 | (14) | |
4 | (15) | |
5 | (16) |
Table 4 Evaluation index of MVC evaporation system
序号 | 方程表达式 | 公式编号 |
---|---|---|
1 | (12) | |
2 | (13) | |
3 | (14) | |
4 | (15) | |
5 | (16) |
序号 | 名称 | 技术特性 |
---|---|---|
1 | 离心式 | 大流量 (100~2000 m3/min);低压比 (1.2~2.2);排气温度高;效率高;对液滴比较敏感;叶轮材料昂贵;有喘振风险 |
2 | 罗茨式 | 中小流量(5~500 m3/min);中低压比 (1.5~3.5);结构简单;振动较小;噪声较高;效率较低;不适用高真空场合;造价低廉 |
3 | 螺杆式 | 中小流量 (5~300 m3/min);高压比 (≤10);效率高;噪声低;稳定性高;可湿压缩;可变频灵活调节;适应高真空;造价较高 |
Table 5 Comparison of the three types of steam compressors
序号 | 名称 | 技术特性 |
---|---|---|
1 | 离心式 | 大流量 (100~2000 m3/min);低压比 (1.2~2.2);排气温度高;效率高;对液滴比较敏感;叶轮材料昂贵;有喘振风险 |
2 | 罗茨式 | 中小流量(5~500 m3/min);中低压比 (1.5~3.5);结构简单;振动较小;噪声较高;效率较低;不适用高真空场合;造价低廉 |
3 | 螺杆式 | 中小流量 (5~300 m3/min);高压比 (≤10);效率高;噪声低;稳定性高;可湿压缩;可变频灵活调节;适应高真空;造价较高 |
性质 | 强制循环 | 升膜式 | 立式降膜 | 卧式降膜 |
---|---|---|---|---|
处理规模 | 大 | 小 | 大 | 小 |
传热系数 | 较高 | 高 | 高 | 高 |
传热温差 | 5~10℃ | 8~12℃ | 3~6℃ | 3~6℃ |
是否低温蒸发 | 是 | 否 | 是 | 是 |
操作难度 | 容易 | 容易 | 较难 | 容易 |
制造难度 | 容易 | 容易 | 较难 | 中等 |
物料停留时间 | 长 | 短 | 短 | 短 |
是否有液静压 | 是 | 是 | 否 | 否 |
装置占地面积 | 大 | 小 | 较大 | 小 |
装置空间高度 | 高 | 低 | 高 | 低 |
清洗容易度 | 较难 | 较难 | 较难 | 容易 |
使用物料特性 | 浓度高、黏度大、易结晶 结垢 | 热敏性、黏度不大,易起沫 | 热敏性、黏度较大,浓度较高 | 热敏性、黏度较大,浓度较高 |
其他特性 | 需要配备较大强制 循环泵,要考虑泵耐温、汽蚀、密封 | 二次蒸汽要有较高速度、 加热温差大、饱和进料 | 小温差下仍具有较高传热系数,对布料盘和换热管加工 要求高 | 小温差下仍具有较高传热系数,换热器内有效空间利用率 较低 |
Table 6 Comparison of the four types of evaporators
性质 | 强制循环 | 升膜式 | 立式降膜 | 卧式降膜 |
---|---|---|---|---|
处理规模 | 大 | 小 | 大 | 小 |
传热系数 | 较高 | 高 | 高 | 高 |
传热温差 | 5~10℃ | 8~12℃ | 3~6℃ | 3~6℃ |
是否低温蒸发 | 是 | 否 | 是 | 是 |
操作难度 | 容易 | 容易 | 较难 | 容易 |
制造难度 | 容易 | 容易 | 较难 | 中等 |
物料停留时间 | 长 | 短 | 短 | 短 |
是否有液静压 | 是 | 是 | 否 | 否 |
装置占地面积 | 大 | 小 | 较大 | 小 |
装置空间高度 | 高 | 低 | 高 | 低 |
清洗容易度 | 较难 | 较难 | 较难 | 容易 |
使用物料特性 | 浓度高、黏度大、易结晶 结垢 | 热敏性、黏度不大,易起沫 | 热敏性、黏度较大,浓度较高 | 热敏性、黏度较大,浓度较高 |
其他特性 | 需要配备较大强制 循环泵,要考虑泵耐温、汽蚀、密封 | 二次蒸汽要有较高速度、 加热温差大、饱和进料 | 小温差下仍具有较高传热系数,对布料盘和换热管加工 要求高 | 小温差下仍具有较高传热系数,换热器内有效空间利用率 较低 |
文献 | 蒸发速率/(t/h) | 压缩机型式 | 蒸发器型式 | 系统流程型式 | 应用行业 | 备注 |
---|---|---|---|---|---|---|
[ | 1.0 | 离心 | 立式降膜 | 单效 | 煤化工废水 | 蒸发浓缩 |
[ | 1.8 | 离心 | 卧式降膜 | 单效 | 垃圾渗滤液 | 蒸发浓缩 |
[ | 2.2 | 离心 | 强制循环 | 单效 | 高盐废水 | 蒸发结晶 |
[ | 2.85 | 离心 | 立式降膜 | 单效 | 制药提取液 | 蒸发浓缩 |
[ | 0.1 | 罗茨 | 立式降膜 | 单效 | — | 蒸发 |
[ | 0.2 | 罗茨 | 升膜 | 单效 | 嗪草酮中间体废水 | 蒸发浓缩 |
[ | 0.4 | 罗茨 | 升膜 | 单效 | 实验-水 | 蒸发 |
[ | 0.45 | 罗茨 | 强制循环 | 单效 | 冶炼厂电解液 | 蒸发浓缩 |
[ | 0.6 | 罗茨 | 强制循环 | 单效 | 化工废水 | 蒸发结晶 |
[ | 0.02 | 单螺杆 | 强制循环 | 单效 | 实验-水 | 蒸发 |
[ | 0.05 | 单螺杆 | 升膜 | 单效 | 核素废水 | 蒸发浓缩 |
[ | 0.4 | 单螺杆 | 强制循环 | 单效 | 热源塔溶液再生 | 蒸发浓缩 |
[ | 1.03 | 双螺杆 | 卧式降膜 | 串联双效 | 采油污水 | 蒸发浓缩 |
[ | 1.25 | 双螺杆 | 卧式降膜 | 串联双效 | 海水淡化 | 蒸发浓缩 |
Table 7 Application examples of different evaporation process
文献 | 蒸发速率/(t/h) | 压缩机型式 | 蒸发器型式 | 系统流程型式 | 应用行业 | 备注 |
---|---|---|---|---|---|---|
[ | 1.0 | 离心 | 立式降膜 | 单效 | 煤化工废水 | 蒸发浓缩 |
[ | 1.8 | 离心 | 卧式降膜 | 单效 | 垃圾渗滤液 | 蒸发浓缩 |
[ | 2.2 | 离心 | 强制循环 | 单效 | 高盐废水 | 蒸发结晶 |
[ | 2.85 | 离心 | 立式降膜 | 单效 | 制药提取液 | 蒸发浓缩 |
[ | 0.1 | 罗茨 | 立式降膜 | 单效 | — | 蒸发 |
[ | 0.2 | 罗茨 | 升膜 | 单效 | 嗪草酮中间体废水 | 蒸发浓缩 |
[ | 0.4 | 罗茨 | 升膜 | 单效 | 实验-水 | 蒸发 |
[ | 0.45 | 罗茨 | 强制循环 | 单效 | 冶炼厂电解液 | 蒸发浓缩 |
[ | 0.6 | 罗茨 | 强制循环 | 单效 | 化工废水 | 蒸发结晶 |
[ | 0.02 | 单螺杆 | 强制循环 | 单效 | 实验-水 | 蒸发 |
[ | 0.05 | 单螺杆 | 升膜 | 单效 | 核素废水 | 蒸发浓缩 |
[ | 0.4 | 单螺杆 | 强制循环 | 单效 | 热源塔溶液再生 | 蒸发浓缩 |
[ | 1.03 | 双螺杆 | 卧式降膜 | 串联双效 | 采油污水 | 蒸发浓缩 |
[ | 1.25 | 双螺杆 | 卧式降膜 | 串联双效 | 海水淡化 | 蒸发浓缩 |
文献 | 水质 成分 | 蒸发速率/ (t/h) | 流程 型式 | 蒸发 温度/℃ | 压缩 温升/ ℃ | 吨水电耗/ (kWh/t) | 材质 | 应用 行业 | 备注 |
---|---|---|---|---|---|---|---|---|---|
[ | 高COD,以硫酸盐/氯化物为主混盐 | 0.25 | 单效/强制循环 | 80 | — | 119.6 | TA2/ 2205 | 化工废水 | 溶液浓缩 |
[ | 高COD,以硫酸盐、氯化物为主混盐 | 0.5 | 罗茨/单效/强制循环 | 85 | 16 | 137.1 | 316 L | 机加工废水 | 溶液浓缩 |
[ | 高COD,盐分不明 | 1.5 | 罗茨/单效/立式降膜 | — | 10 | 28.8 | — | 石化废水 | 溶液浓缩 |
[ | 高COD,以氯化物为主混盐 | 1.8 | 罗茨/单效/强制循环 | — | 17.6 | 77.78 | TA2 | 垃圾渗滤液 | 溶液浓缩/ 杂盐结晶 |
[ | 高COD,盐分不明 | 8.33 | 单效/强制循环 | 70 | — | 78.73 | — | 垃圾渗滤液 | 溶液浓缩/ 杂盐结晶 |
[ | 高COD,盐分不明 | 12.22 | 单效/强制循环 | 70~73 | — | 60-60 | — | 垃圾渗滤液 | 溶液浓缩/ 杂盐结晶 |
[ | 高COD,以氯化物为主混盐 | 5.7 | 单效/强制循环 | 85 | 30 | — | — | 农业废水 | 溶液浓缩/ 杂盐结晶 |
[ | 高COD,盐分不明 | 0.5 | 单效/强制循环 | — | — | 99.2 | 316 L | 不锈钢废水 | 溶液浓缩/ 杂盐结晶 |
[ | 高COD,含盐以氯化物为主 | 4 | 单效/强制循环 | 90 | 18 | — | TA2/ 2205 | 船舶废水 | 溶液浓缩/ 杂盐结晶 |
[ | 以硫酸钠为主混盐溶液(化学沉淀 去除COD) | 0.4 | 罗茨/并联双效/立式降膜+强制循环 | 85 | 18 | — | 316 L | 光伏行业废水 | 杂盐结晶 |
[ | 以硫酸盐、氯化物为主混盐溶液(化学沉淀去除COD) | 20 | 离心/并联双效/立式降膜+强制循环 | — | 10~18 | — | TA2/ 2205 | 净水厂废水 | 杂盐结晶 |
[ | 氯化钙溶液 | — | 离心 | 100 | — | — | — | 多晶硅废水 | 纯盐浓缩 |
[ | 硫酸镍溶液 | 1.0 | 单效/强制循环 | 75 | 13 | — | 316 L | 冶金制盐 | 纯盐结晶 |
[ | 硫酸钠溶液 | 76.5 | 并联双效/立式降膜+强制循环 | 90 | 12 | 31.14 | 316 L | 电池废水 | 纯盐结晶 |
[ | 硫酸钠溶液 | 2.0 | 单效/强制循环 | 90 | 16 | 60 | 316 L | 电池废水 | 纯盐结晶 |
[ | 氯化钠溶液(化学氧化去除COD) | 8.0 | — | 90 | — | — | TA2 | 化工废水 | 纯盐结晶 |
[ | 牛乳溶液 | 6.0 | 离心/立式降膜 | 65 | 8 | 25.3 | — | 乳品 | 乳液浓缩 |
[ | 中药提取液 | 5.5 | 离心/并联双效/立式降膜 | 80 | 8 | 24 | — | 中药生产 | 中药浓缩 |
[ | 烟草提取液 | 5.17 | 离心/并联七效/立式降膜 | 55 | 8 | 35 | — | 烟叶生产 | 浆液浓缩 |
Table 8 Engineering case of MVC evaporation system
文献 | 水质 成分 | 蒸发速率/ (t/h) | 流程 型式 | 蒸发 温度/℃ | 压缩 温升/ ℃ | 吨水电耗/ (kWh/t) | 材质 | 应用 行业 | 备注 |
---|---|---|---|---|---|---|---|---|---|
[ | 高COD,以硫酸盐/氯化物为主混盐 | 0.25 | 单效/强制循环 | 80 | — | 119.6 | TA2/ 2205 | 化工废水 | 溶液浓缩 |
[ | 高COD,以硫酸盐、氯化物为主混盐 | 0.5 | 罗茨/单效/强制循环 | 85 | 16 | 137.1 | 316 L | 机加工废水 | 溶液浓缩 |
[ | 高COD,盐分不明 | 1.5 | 罗茨/单效/立式降膜 | — | 10 | 28.8 | — | 石化废水 | 溶液浓缩 |
[ | 高COD,以氯化物为主混盐 | 1.8 | 罗茨/单效/强制循环 | — | 17.6 | 77.78 | TA2 | 垃圾渗滤液 | 溶液浓缩/ 杂盐结晶 |
[ | 高COD,盐分不明 | 8.33 | 单效/强制循环 | 70 | — | 78.73 | — | 垃圾渗滤液 | 溶液浓缩/ 杂盐结晶 |
[ | 高COD,盐分不明 | 12.22 | 单效/强制循环 | 70~73 | — | 60-60 | — | 垃圾渗滤液 | 溶液浓缩/ 杂盐结晶 |
[ | 高COD,以氯化物为主混盐 | 5.7 | 单效/强制循环 | 85 | 30 | — | — | 农业废水 | 溶液浓缩/ 杂盐结晶 |
[ | 高COD,盐分不明 | 0.5 | 单效/强制循环 | — | — | 99.2 | 316 L | 不锈钢废水 | 溶液浓缩/ 杂盐结晶 |
[ | 高COD,含盐以氯化物为主 | 4 | 单效/强制循环 | 90 | 18 | — | TA2/ 2205 | 船舶废水 | 溶液浓缩/ 杂盐结晶 |
[ | 以硫酸钠为主混盐溶液(化学沉淀 去除COD) | 0.4 | 罗茨/并联双效/立式降膜+强制循环 | 85 | 18 | — | 316 L | 光伏行业废水 | 杂盐结晶 |
[ | 以硫酸盐、氯化物为主混盐溶液(化学沉淀去除COD) | 20 | 离心/并联双效/立式降膜+强制循环 | — | 10~18 | — | TA2/ 2205 | 净水厂废水 | 杂盐结晶 |
[ | 氯化钙溶液 | — | 离心 | 100 | — | — | — | 多晶硅废水 | 纯盐浓缩 |
[ | 硫酸镍溶液 | 1.0 | 单效/强制循环 | 75 | 13 | — | 316 L | 冶金制盐 | 纯盐结晶 |
[ | 硫酸钠溶液 | 76.5 | 并联双效/立式降膜+强制循环 | 90 | 12 | 31.14 | 316 L | 电池废水 | 纯盐结晶 |
[ | 硫酸钠溶液 | 2.0 | 单效/强制循环 | 90 | 16 | 60 | 316 L | 电池废水 | 纯盐结晶 |
[ | 氯化钠溶液(化学氧化去除COD) | 8.0 | — | 90 | — | — | TA2 | 化工废水 | 纯盐结晶 |
[ | 牛乳溶液 | 6.0 | 离心/立式降膜 | 65 | 8 | 25.3 | — | 乳品 | 乳液浓缩 |
[ | 中药提取液 | 5.5 | 离心/并联双效/立式降膜 | 80 | 8 | 24 | — | 中药生产 | 中药浓缩 |
[ | 烟草提取液 | 5.17 | 离心/并联七效/立式降膜 | 55 | 8 | 35 | — | 烟叶生产 | 浆液浓缩 |
1 | 邵继军. 我国氯碱工业节能技术的进展与发展方向[J]. 化工管理, 2019(29): 18. |
Shao J J. Progress and development direction of energy-saving technology in chlor-alkali industry in China[J]. Chemical Enterprise Management, 2019(29): 18. | |
2 | 毛鹏. 氧化铝蒸发工序能耗分析及节能措施[J]. 有色冶金节能, 2019, 35(4): 18-22. |
Mao P. Energy consumption analysis and energy saving measures for alumina evaporation process[J]. Energy Saving of Nonferrous Metallurgy, 2019, 35(4): 18-22. | |
3 | 穆世慧. 我国制盐行业的能耗现状及余热回收应用实例分析[J]. 节能, 2021, 40(5): 48-50. |
Mu S H. Present situation of energy consumption of salt industry in China and application analysis of waste heat recovery[J]. Energy Conservation, 2021, 40(5): 48-50. | |
4 | 钟文蔚, 黎万钰, 丁菲, 等. 基于中药水提液浓缩过程溶液环境特征参数相关性的瞬时能耗计算方法探索: 以玉屏风散水提液为例[J]. 中草药, 2021, 52(7): 1937-1944. |
Zhong W W, Li W Y, Ding F, et al. Dynamic energy estimation with key parameters of aqueous environment of traditional Chinese medicine extracts incorporated—Example given in concentration process of Yupingfeng Powder extracts [J]. Chinese Traditional and Herbal Drugs, 2021, 52(7): 1937-1944. | |
5 | 马妍, 李之瑞, 韩延民. 热膜耦合海水淡化节能分析[J]. 上海节能, 2022(6): 732-737. |
Ma Y, Li Z R, Han Y M. Energy saving analysis on hybrid seawater desalination[J]. Shanghai Energy Conservation, 2022(6): 732-737. | |
6 | 张承前. 机械蒸汽再压缩蒸发结晶系统研究[J]. 时代农机, 2018, 45(4): 220. |
Zhang C Q. Study on mechanical vapor recompression evaporation crystallization system[J]. Times Agricultural Machinery, 2018, 45(4): 220. | |
7 | 吴迪, 胡斌, 王如竹, 等. 水制冷剂及水蒸气压缩机研究现状和展望[J]. 化工学报, 2017, 68(8): 2959-2968. |
Wu D, Hu B, Wang R Z, et al. A review on development and prospect of water refrigerant and water vapor compressor[J]. CIESC Journal, 2017, 68(8): 2959-2968. | |
8 | Hu B, Wu D, Wang R Z. Water vapor compression and its various applications[J]. Renewable and Sustainable Energy Reviews, 2018, 98: 92-107. |
9 | 武超, 梁鹏飞, 张冲, 等. MVR 技术处理高盐废水应用进展[J]. 化学工程与装备, 2020(2): 202-203. |
Wu C, Liang P F, Zhang C, et al. Application of MVR technology in the treatment of high salt wastewater[J]. Chemical Engineering & Equipment, 2020(2): 202-203. | |
10 | 刘波, 丛蕾, 范丽华, 等. MVR技术在高盐废水零排放处理中的应用进展研究[J]. 节能, 2022, 41(6): 23-26. |
Liu B, Cong L, Fan L H, et al. Application progress of MVR technology in zero discharge treatment of high salt wastewater[J]. Energy Conservation, 2022, 41(6): 23-26. | |
11 | 杨俊玲, 杨鲁伟, 张振涛. MVR热泵节能技术的研究进展[J]. 风机技术, 2016, 54(4): 84-88. |
Yang J L, Yang L W, Zhang Z T. Review on energy-saving technology with MVR[J]. Compressor, Blower & Fan Technology, 2016, 58(4): 84-88. | |
12 | 侯超, 杨鲁伟, 蔺雪军, 等. 高盐废水蒸发结晶过程采用机械蒸汽再压缩(MVR)技术特性研究[J]. 现代化工, 2022, 42(6): 211-215, 220. |
Hou C, Yang L W, Lin X J, et al. Characteristics research on application of mechanical vapor recompression (MVR) technology in evaporation and crystallization of high salinity wastewater[J]. Modern Chemical Industry, 2022, 42(6): 211-215, 220. | |
13 | 李伟, 朱曼利, 洪厚胜. 机械蒸汽再压缩系统的设计及其在食品工业中的应用[J]. 食品与机械, 2016, 32(7): 223-226. |
Li W, Zhu M L, Hong H S. Design and application in food industry of mechanical vapor recompression system [J]. Food & Machinery, 2016, 32(7): 223-226. | |
14 | 姜华, 张子尧, 宫武旗. MVR并联双效蒸发结晶系统设计及研究[J]. 化工进展, 2019, 38(10): 4461-4469. |
Jiang H, Zhang Z Y, Gong W Q. Design and research of MVR parallel double-effect evaporation crystallization system[J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4461-4469. | |
15 | Han D, Si Z T, Chen J J. Analysis of an intermittent mechanical vapor recompression evaporation system[J]. Applied Thermal Engineering, 2021, 193(1): 116996. |
16 | Shen J B, Xing Z W, Wang X L, et al. Analysis of a single-effect mechanical vapor compression desalination system using water injected twin screw compressors[J]. Desalination, 2014, 333(1): 146-153. |
17 | Li J Q, Si Z T, Hang D, et al. Thermo-economic performance enhancement in batch evaporation process via mechanical vapor recompression system coupled with steam accumulator[J]. Desalination, 2022, 532: 115735. |
18 | 安雪峰, 刘广建, 陈海平. 燃煤电厂脱硫废水热法零排放系统设计及分析[J]. 洁净煤技术, 2022, 28(6): 175-183. |
An X F, Liu G J, Chen H P. Design and analysis of thermal zero discharge for flue gas desulfurization wastewater of coal-fired power plants[J]. Clean Coal Technology, 2022, 28(6): 175-183. | |
19 | Schwantes R, Chavan K, Winter D, et al. Techno-economic comparison of membrane distillation and MVC in a zero liquid discharge application[J]. Desalination, 2018, 428: 50-68. |
20 | Wu H, Yin H Y, Li Y L, et al. Effect of droplets on water vapor compression performance[J]. Desalination, 2019, 464(2): 33-47. |
21 | Yin H Y, Wu H, Li Y L, et al. Performance analysis of the water-injected centrifugal vapor compressor[J]. Energy, 2020, 200: 117538. |
22 | Shen J B, Feng G Z, Xing Z W, et al. Theoretical study of two-stage water vapor compression systems[J]. Applied Thermal Engineering, 2019, 147: 972-982. |
23 | 江小英. 国产低温升离心蒸汽压缩机在MVR中的应用[J]. 风机技术, 2020, 62(S1): 34-37. |
Jiang X Y. Application of domestic low temperature rising centrifugal steam compressor in MVR[J]. Chinese Journal of Turbomachinery, 2020, 62(S1): 34-37. | |
24 | 周东, 文鑫, 王净, 等. MVR系统中离心式蒸汽压缩机与蒸发器的匹配特性研究[J]. 工程设计学报, 2022, 29(5): 1-12. |
Zhou D, Wen X, Wang J, et al. Study on matching characteristics of centrifugal vapor compressor and evaporator in MVR system[J]. Chinese Journal of Engineering Design, 2022, 29(5): 1-12. | |
25 | 侯超, 张振涛, 杨鲁伟, 等. 中药提取液蒸发浓缩过程采用机械蒸汽再压缩技术特性研究[J]. 现代化工, 2016, 36(11): 172-174. |
Hou C, Zhang Z T, Yang L W, et al. Characteristics research of mechanical vapor recompression technology used in evaporation and concentration of Chinese medicine extract[J]. Modern Chemical Industry, 2016, 36(11): 172-174. | |
26 | 俞丽华, 许树学, 马国远. 中间补气对罗茨式水蒸气制冷压缩机工作性能的影响[J]. 制冷与空调, 2016, 30(4): 502-507. |
Yu L H, Xu S X, Ma G Y. Effect of a vapor injection on working performances of the roots compressor in water vapor compression refrigeration system[J]. Refrigeration & Air Conditioning, 2016, 30(4): 502-507. | |
27 | 张化福, 张青春, 童莉葛, 等. 罗茨水蒸气压缩机性能实验研究[J]. 制冷学报, 2022, 43(1): 68-73. |
Zhang H F, Zhang Q C, Tong L G, et al. Experimental study on performance of roots steam compressor[J]. Journal of Refrigeration, 2022, 43(1): 68-73. | |
28 | 张宝夫, 李金建, 吴意囡, 等. 提高罗茨式蒸汽压缩机运行特性的设计改进[J]. 化工机械, 2018, 45(6): 722-724. |
Zhang B F, Li J J, Wu Y N, et al. Design improvement for roots vapor compressors[J]. Chemical Engineering & Machinery, 2018, 45(6): 722-724. | |
29 | 江远峰. 水蒸气罗茨压缩机轴封优化设计[J]. 机电信息, 2021(12): 36-38. |
Jiang Y F. Optimal design of shaft seal of steam roots compressor[J]. Mechanical and Electrical Information, 2021(12): 36-38 | |
30 | 蔡玉强, 孟欣. 蒸汽压缩蒸馏装置罗茨压缩机内部流场的数值分析[J]. 流体机械, 2015, 43(4): 17-20, 56. |
Cai Y Q, Meng X. Numeric analysis on inside flow field of lobed rotor compressor in the vapor compression distillation device[J]. Fluid Machinery, 2015, 43(4): 17-20, 56 | |
31 | Shen J B, Xing Z W, Zhang K, et al. Development of a water-injected twin-screw compressor for mechanical vapor compression desalination systems[J]. Applied Thermal Engineering, 2016, 95: 125-135. |
32 | 田雅芬, 耿妍婷, 夏阳, 等. 双螺杆水蒸气压缩机喷水冷却特性研究[J]. 机械工程学报, 2022, 58: 1-8. |
Tian Y F, Geng Y T, Xia Y, et al. Investigation on the characteristics of water injected twin-screw steam compressor[J]. Journal of Mechanical Engineering, 2022, 58: 1-8. | |
33 | Tian Y F, Geng Y T, Yuan H, et al. Investigation on water injection characteristics and its influence on the performance of twin-screw steam compressor[J]. Energy, 2022, 259: 124886. |
34 | 杨鲁伟, 张振涛, 吴小华. 水润滑式单螺杆水蒸气压缩机性能改进研究[J]. 内燃机与配件, 2016(1): 30-32. |
Yang L W, Zhang Z T, Wu X H. Study on performance improvement of water-lubricated single-screw steam compressor[J]. Internal Combustion Engine & Parts, 2016(8): 30-32. | |
35 | Wang Z L, Yuan Q Z, Wang J, et al. Theoretical study on leakage characteristics of water-injected single screw vapor compressors with a multicolumn envelope meshing pair[J]. Applied Thermal Engineering, 2023, 219: 119430. |
36 | Shen J B, Tan N G, Li Z C, et al. Analysis of a novel double-effect split mechanical vapor recompression systems for wastewater concentration[J]. Applied Thermal Engineering, 2022, 216: 119019. |
37 | 沈九兵, 谭牛高, 李志超, 等. 印染丝光淡碱液MVR蒸馏系统研究[J]. 现代化工, 2022, 42(6): 206-210. |
Shen J B, Tan N G, Li Z C, et al. Study on MVR distillation system for treatment of alkali-containing wastewater from dyeing mercerizing process[J]. Modern Chemical Industry, 2022, 42(6): 206-210. | |
38 | 李铁良, 李胜, 裴程林, 等. MVR系统钾钠盐蒸发结晶分盐研究[J]. 盐科学与化工, 2021, 50(4): 21-25. |
Li T L, Li S, Pei C L, et al. Analysis on evaporative crystallization and separation of potassium and sodium in MVR system[J]. Journal of Salt Science and Chemical Industry, 2021, 50(4): 21-25. | |
39 | 周微, 陈天欣, 薛元杰, 等. MVR在压裂返排液处理中能效提升的研究[J]. 广东化工, 2020, 47(24): 9-11, 24. |
Zhou W, Chen T X, Xue Y J, et al. Research on energy efficiency improvement of MVR in fracturing flowback fluid treatment[J]. Guangdong Chemical Industry, 2020, 47(24): 9-11, 24 | |
40 | 刘德华. MVR蒸发技术在单水氢氧化锂装置上的应用[J]. 硫磷设计与粉体工程, 2022(3): 32-36, 6. |
Liu D H. Application of MVR evaporation technology in lithium hydroxide monohydrate unit[J]. Sulphur Phosphorus & Bulk Materials Handling Related Engineering, 2022(3): 32-36, 6 | |
41 | 孙桂祥, 罗先德, 侯超. 机械蒸汽再压缩热泵蒸发技术用于蒸氨废液处理实验研究[J]. 节能与环保, 2022(3): 62-64. |
Sun G X, Luo X D, Hou C. Experimental study on mechanical steam recompression heat pump evaporation technology for ammonia waste liquid treatment[J]. Energy Conservation & Environmental Protection, 2022(3): 62-64. | |
42 | 张琳, 刘瑞利, 许一帆, 等. 升膜蒸发器管内传热性能的实验研究[J]. 现代化工, 2016, 36(2): 148-151. |
Zhang L, Liu R L, Xu Y F, et al. Experimental study of heat transfer and flow visualization in climbing film evaporation pipe[J]. Modern Chemical Industry, 2016, 36(2): 148-151. | |
43 | 郎鑫焱. 机械蒸汽压缩晶种法立式降膜蒸发减量一体化水处理技术在火电厂脱硫废水零排放工程中的应用[J]. 电器工业, 2022(4): 50-54. |
Lang X Y. Application of vertical falling film evaporation reduction integrated water treatment technology by mechanical steam compression seed method in zero discharge project of desulfurization wastewater in thermal power plant[J]. China Electrical Equipment Industry, 2022(4): 50-54. | |
44 | 李贵燕. MVR降膜蒸发器的数值模拟及节能分析[D]. 石家庄: 石家庄铁道大学, 2015. |
Li G Y. Numerical simulation and energy saving analysis of MVR falling film evaporator[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2015. | |
45 | 曹艳美, 王瑜. MVRC 系统水平管含盐废水喷淋降膜传热数值研究[J]. 工程热物理学报, 2022, 43(10): 2751-2763. |
Cao Y M, Wang Y. Numerical study on heat transfer of salty wastewater spray falling film over a horizontal tube in the MVRC system[J]. Journal of Engineering Thermophysics, 2022, 43(10): 2751-2763. | |
46 | 柳山林. 水平管降膜管间流型与管外传热系数分布研究[D]. 大连: 大连理工大学, 2021. |
Liu S L. Inter-tube flow pattern and outside-tube heat transfer coefficient distribution of horizontal tube falling film[D]. Dalian: Dalian University of Technology, 2021. | |
47 | 刘军, 张冲, 杨鲁伟, 等. 夹套式MVR热泵蒸发浓缩系统性能分析[J]. 化工学报, 2015, 66(5): 1904-1911. |
Liu J, Zhang C, Yang L W, et al. Performance analysis of jacketed MVR heat pump evaporation concentration system[J]. CIESC Journal, 2015, 66(5): 1904-1911. | |
48 | 王建, 徐翔. 内置蒸发器MVR系统处理高盐废水的应用[J]. 山西化工, 2019, 39(1): 169-171. |
Wang J, Xu X. Application of MVR system with built-in evaporator in treatment of high-salt wastewater[J]. Shanxi Chemical Industry, 2019, 39(1): 169-171. | |
49 | 张子尧, 姜华, 宫武旗. 机械蒸汽再压缩蒸发结晶系统优化设计[J]. 西安交通大学学报, 2020, 54(4): 101-109. |
Zhang Z Y, Jiang H, Gong W Q. Optimization design for mechanical vapor recompression evaporation crystallization system[J]. Journal of Xi'an Jiaotong University, 2020, 54(4): 101-109. | |
50 | Jiang H, Zhang Z Y, Gong W Q. Design and evaluation of a parallel-connected double-effect mechanical vapor recompression evaporation crystallization system[J]. Applied Thermal Engineering, 2020, 179: 115646. |
51 | 杨信成. MVR在盐硝废水中应用的理论研究[J]. 山东化工, 2020, 49(24): 242-243. |
Yang X C. Theoretical study on application of MVR in salt and nitrate wastewater[J]. Shandong Chemical Industry, 2020, 49(24): 242-243. | |
52 | Elsayed M L, Mesalhy O, Mohammed R H, et al. Transient and thermo-economic analysis of MED-MVC desalination system[J]. Energy, 2019, 167: 283-296. |
53 | Elsayed M L, Mesalhy O, Mohammed R H, et al. Performance modeling of MED-MVC systems: exergy-economic analysis[J]. Energy, 2019, 166: 552-568. |
54 | 李宜豪, 沈慧姝, 沈胜强, 等. 机械蒸汽压缩并流进料多效蒸发系统能耗计算分析[J]. 大连理工大学学报, 2020, 60(4): 383-391. |
Li Y H, Shen H S, Shen S Q, et al. Energy consumption calculation and analysis of parallel feed multi-effect evaporation system with mechanical vapor compression[J]. Journal of Dalian University of Technology, 2020, 60(4): 383-391. | |
55 | 冉文. MVR技术嵌入多效蒸发的可行性研究与探讨[J]. 中国井矿盐, 2022, 53(1): 7-11. |
Ran W. Feasibility study and discussion of MVR technology embedded multi-effect evaporation[J]. China Well and Rock Salt, 2022, 53(1): 7-11. | |
56 | 赵远扬, 刘广彬, 李连生, 等. 机械蒸汽再压缩系统的性能分析[J]. 流体机械, 2017, 45(6): 16-20, 60. |
Zhao Y Y, Liu G B, Li L S, et al. Performance analysis on mechanical vapor recompression system[J]. Fluid Machinery, 2017, 45(6): 16-20, 60. | |
57 | 田玲. MVR蒸发技术在废水处理中的应用研究[J]. 工业水处理. DOI: 10.19965/j.cnki.iwt.2022-0574 . |
Tian L. Application research of MVR evaporation technology in wastewater treatment[J]. Industrial Water Treatment. DOI: 10.19965/j.cnki.iwt.2022-0574 . | |
58 | 李强平. 机械蒸汽再压缩系统在高浓度含盐废水处理中的应用研究[D]. 杭州: 浙江工业大学, 2019. |
Li Q P. Research and application of mechanical vapor recompression system for treating high concentration saline wastewater[D]. Hangzhou: Zhejiang University of Technology, 2019. | |
59 | 汤添钧. 基于机械蒸汽再压缩系统的制药行业蒸发工艺节能研究[D]. 苏州: 苏州科技大学, 2017. |
Tang T J. Energy-saving research of evaporation process in pharmaceutical industry based on mechanical vapor recompression system[D]. Suzhou: Suzhou University of Science and Technology, 2017. | |
60 | Hong H S, Li W, Gu C Z. Performance study on a mechanical vapor compression evaporation system driven by roots compressor[J]. International Journal of Heat and Mass Transfer, 2018, 125: 343-349. |
61 | 党东辉. 草酮中间体芳酰肼合成工艺研究及原料锡回收的MVR工艺设计[D]. 湘潭: 湘潭大学, 2019. |
Dang D H. Study on synthesis of oxadiazon intermediate aromatic hydrazide and MVR process design for Sn recovery[D]. Xiangtan: Xiangtan University, 2019. | |
62 | 张化福, 杨鲁伟, 张振涛, 等. 罗茨风机驱动机械蒸汽再压缩热泵蒸发器系统运行特性的试验研究[J]. 节能技术, 2015, 33(2): 113-117. |
Zhang H F, Yang L W, Zhang Z T, et al. Experimental study of operating characteristics of mechanical vapor recompression heat pump evaporator system driven by roots blower[J]. Energy Conservation Technology, 2015, 33(2): 113-117. | |
63 | 杨锦波. MVR浓缩硫酸铜技术在实际生产中的优势[J]. 铜业工程, 2022(3): 70-73. |
Yang J B. Advantages of MVR concentrated copper sulfate technology in practical production[J]. Copper Engineering, 2022(3): 70-73. | |
64 | 张军, 宋萌萌, 高兴, 等. 以MVR为核心的含盐废水处理工艺设计[J]. 中国给水排水, 2020, 36(24): 109-114. |
Zhang J, Song M M, Gao X, et al. Design of saline wastewater treatment process with MVR as core treatment unit[J]. China Water & Wastewater, 2020, 36(24): 109-114. | |
65 | 王力威, 庄景发, 杨鲁伟, 等. 单螺杆水蒸气压缩机驱动的MVR系统性能实验研究[J]. 中国科学院大学学报, 2015, 32(1): 38-45. |
Wang L W, Zhuang J F, Yang L W, et al. Experimental study on performance of MVR system driven by single screw water vapor compressor[J]. Journal of University of Chinese Academy of Sciences, 2015, 32(1): 38-45. | |
66 | Hou C, Lin W Y, Wang L W, et al. Experimental performance evaluation and model-based optimal design of a mechanical vapour recompression system for radioactive wastewater treatment[J]. Energy Conversion and Management, 2022, 252: 115087. |
67 | Zhang H F, Zhang Z T, Tong L G, et al. A mechanical vapor compression regeneration system of potassium formate solution: model development, experimental verification and performance prediction[J]. Desalination, 2022, 539: 115940. |
68 | 沈九兵, 张凯, 邢子文, 等. 采用双螺杆压缩机的机械蒸汽再压缩污水处理系统试验研究[J]. 机械工程学报, 2016, 52(10): 185-190. |
Shen J B, Zhang K, Xing Z W, et al. Experimental study of mechanical vapor compression wastewater distillation system using twin screw compressor[J]. Journal of Mechanical Engineering, 2016, 52(10): 185-190. | |
69 | 王汉治, 李帅旗, 黄冲, 等. 喷气增焓型单级MVR 蒸发结晶系统性能分析[J]. 化工进展, 2018, 37(9): 3312-3319. |
Wang H Z, Li S Q, Huang C, et al. Performance analysis of single-effect MVR evaporative crystallization system using vapor injected compressor[J]. Chemical Industry and Engineering Progress, 2018, 37(9): 3312-3319. | |
70 | 张承虎, 孙文, 林己又. 沸点温升影响下机械蒸汽再压缩系统性能研究[J]. 化学工程与装备, 2018, 46(10): 21-25. |
Zhang C H, Sun W, Lin J Y. Performance of mechanical vapor recompression system considering boiling point temperature rise[J]. Chemical Engineering & Equipment, 2018, 46(10): 21-25. | |
71 | Xu J, Xie J X, Cheng Z, et al. Source apportionment of pulping wastewater and application of mechanical vapor recompression: environmental and economic analyses[J]. Journal of Environmental Management, 2021, 292: 112740. |
72 | 李景华, 刘鲁民, 苏少华, 等. MVR+STRO+RO组合工艺在高浓度垃圾渗滤液处理工程中的应用[J]. 工业技术创新, 2022, 9(2): 61-67. |
Li J H, Liu L M, Su S H, et al. Application of MVR+STRO+RO combined process in high concentration landfill leachate treatment project[J]. Industrial Technology Innovation, 2022, 9(2): 61-67. | |
73 | 雷颉, 邬容伟, 郭勤, 等. MVR-铁碳芬顿-厌氧生化组合工艺处理西他沙星制药废水[J]. 水处理技术, 2022, 48(7): 136-139, 144. |
Lei J, Wu R W, Guo Q, et al. MVR-Fe/C-Fenton-anaerobic biochemical combined process for treatment of sitaxacin pharmaceutical wastewater[J]. Technology of Water Treatment, 2022, 48(7): 136-139, 144. | |
74 | 禤耀明, 罗中良. 基于MVR技术的中药浓缩工艺设计及应用[J]. 内蒙古科技与经济, 2020(13): 85-86, 93. |
Xuan Y M, Luo Z L. Design and application of traditional Chinese medicine concentration process based on MVR technology[J]. Inner Mongolia Science Technology & Economy, 2020(13): 85-86, 93. | |
75 | 董留涛, 王立强, 李倩. NMMO溶液蒸发工艺的比较及经济分析[J]. 合成纤维, 2021, 50(5): 36-40, 57. |
Dong L T, Wang L Q, Li Q. Comparative analysis and economic analysis on NMMO solution evaporation process[J]. Synthetic Fiber in China, 2021, 50(5): 36-40, 57. | |
76 | Chen J J, Han D, Han Z F, et al. Experimental investigation of a novel batch evaporation system coupled mechanical vapor recompression technology and steam heat storage technology[J]. Innovative Food Science & Emerging Technologies, 2021, 68: 102616. |
77 | 马振荣, 李子云, 丁峰. 硝酸钾溶液的节能浓缩工艺[J]. 盐科学与化工, 2022, 51(7): 27-30. |
Ma Z R, Li Z Y, Ding F. Energy saving technology of concentrated potassium nitrate solution[J]. Journal of Salt Science and Chemical Industry, 2022, 51(7): 27-30. | |
78 | 安雪峰. 燃煤电厂脱硫废水热法零排放系统设计及性能研究[D]. 北京: 华北电力大学(北京), 2021. |
An X F. Design and performance study of zero discharge system for desulfurization wastewater by thermal method in coal-fired power plant[D]. Beijing: North China Electric Power University, 2021. | |
79 | Dahmardeh H, Amiri H A, Nowee S. Evaluation of mechanical vapor recompression crystallization process for treatment of high salinity wastewater[J]. Chemical Engineering and Processing - Process Intensification, 2019, 145(C): 107682. |
80 | Wang H Z, Li S Q, Huang C, et al. Performance analysis of a mechanical vapor recompression zero-emission system with water-injected compressor[J]. Energy Procedia, 2018, 152: 863-868. |
81 | 沈九兵, 谭牛高, 肖艳萍, 等. 多效MVR蒸发浓缩水处理系统研究[J]. 工业水处理, 2022, 42(7): 147-153. |
Shen J B, Tan N G, Xiao Y P, et al. Study on multi-effect MVR evaporation concentrated water treatment system[J]. Industrial Water Treatment, 2022, 42(7): 147-153. | |
82 | 越云凯, 吴小华, 张振涛. MVR海水淡化系统运行特性分析与优化[J]. 工程热物理学报, 2018, 39(9): 1985-1990. |
Yue Y K, Wu X H, Zhang Z T. Operation characteristic analysis and optimization of MVR seawater desalination system[J]. Journal of Engineering Thermophysics, 2018, 39(9): 1985-1990. | |
83 | 李志新. 多效MVR海水淡化系统工艺流程模拟及性能研究[D]. 包头: 内蒙古科技大学, 2019. |
Li Z X. Process flow of multi-effect MVR seawater desalination system simulation and performance study[D]. Baotou: Inner Mongolia University of Science & Technology, 2019. | |
84 | 李宜豪. 机械蒸汽压缩海水淡化装置热力性能研究[D]. 大连: 大连理工大学, 2020. |
Li Y H. Study on thermal performance of mechanical vapor compression desalination equipment[D]. Dalian: Dalian University of Technology, 2020. | |
85 | Rostamzadeh H. A new pre-concentration scheme for brine treatment of MED-MVC desalination plants towards low-liquid discharge (LLD) with multiple self-superheating[J]. Energy, 2021, 225: 120224. |
86 | 贺宇, 余延顺, 刘青青. 除霜溶液MVR再生技术的可行性研究[J]. 建筑热能通风空调, 2021, 40(5): 10-14. |
He Y, Yu Y S, Liu Q Q. Feasibility of MVR for defrosting solution regeneration[J]. Building Energy & Environment, 2021, 40(5): 10-14. | |
87 | 张勤灵, 刘晓华, 张涛. 机械蒸汽再压缩系统再生高浓度溶液的性能研究[J]. 制冷学报, 2021, 42(3): 19-27. |
Zhang Q L, Liu X H, Zhang T. Regeneration performance of high concentration solution by mechanical vapor recompression system[J]. Journal of Refrigeration, 2021, 42(3): 19-27. | |
88 | Ai S H, Wang B L, Li X T, et al. Numerical analysis on the performance of mechanical vapor recompression system for strong sodium chloride solution enrichment[J]. Applied Thermal Engineering, 2018, 137: 386-394. |
89 | 姜华, 张子惠, 宫武旗, 等. MVR分质提盐蒸发结晶系统设计及性能分析[J]. 化工进展, 2022, 41(7): 3947-3956. |
Jiang H, Zhang Z H, Gong W Q, et al. Design and performance analysis of mechanical vapor recompression salt fractionation evaporation crystallization system[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3947-3956. | |
90 | 徐文江, 张志辉, 李安峰, 等. 机械式蒸汽再压缩技术处理高盐废水的工程实例[J]. 环境工程, 2018, 36: 68-70. |
Xu W J, Zhang Z H, Li A F, et al. Engineering example of mechanical steam recompression technology for treatment of high salt wastewater[J]. Environmental Engineering, 2018, 36: 68-70. | |
91 | 刘兴. 机械加工生产废水处理零排放工程实例[J]. 山东化工, 2020, 49(22): 238-241. |
Liu X. Instance of the zero discharge project on the treatment of machining wastewater[J]. Shandong Chemical Industry, 2020, 49(22): 238-241. | |
92 | 王晶晶, 赵利民, 廖昌建. 机械蒸汽再压缩(MVR)技术在丙烯腈废水处理中的工业侧线试验研究[J]. 安全、健康和环境, 2022, 22(6): 41-45. |
Wang J J, Zhao L M, Liao C J. Industrial side-line experimental study of mechanical steam recompression (MVR) in acrylonitrile wastewater treatment[J]. Safety Health & Environment, 2022, 22(6): 41-45. | |
93 | 徐鹏飞. MVR-MBR-活性炭工艺处理稳定化飞灰渗滤液工程实例[J]. 工业用水与废水, 2020, 51(5): 69-72. |
Xu P F. A project example of treatment of stabilized fly ash leachate by MVR-MBR-activated carbon process[J]. Industrial Water & Wastewater, 2020, 51(5): 69-72. | |
94 | 卢明. MVR工艺在生活垃圾填埋场反渗透浓缩液处理中的应用[J]. 绿色科技, 2021, 23(22): 185-189. |
Lu M. Application of MVR process in reverse osmosis concentrated solution treatment of domestic waste landfill[J]. Journal of Green Science and Technology, 2021, 23(22): 185-189. | |
95 | 朱玉修. 负压MVR技术在垃圾填埋场浓缩液处理工程中的应用[J]. 化工管理, 2022(2): 56-59. |
Zhu Y X. Application of negative pressure MVR technology in concentrated liquid treatment project of landfill[J]. Chemical Management, 2022(2): 56-59. | |
96 | 周恩普, 崔康平, 李凯波. 混凝/MVR/微电解/芬顿/SBR处理精喹禾灵农药废水[J]. 中国给水排水, 2019, 35(16): 107-112. |
Zhou E P, Cui K P, Li K B. A combined process of coagulation and sedimentation, MVR, microelectrolysis, Fenton oxidation and SBR for treating quizalofop-p-ethyl pesticide wastewater[J]. China Water & Wastewater, 2019, 35(16): 107-112. | |
97 | 邵启运, 蒋志辉, 袁东日, 等. 不锈钢产品生产废水零排放工程实例[J]. 工业水处理, 2021, 41(7): 152-156. |
Shao Q Y, Jiang Z H, Yuan D R, et al. Project example of zero-discharge treatment of stainless-steel production wastewater[J]. Industrial Water Treatment, 2021, 41(7): 152-156. | |
98 | 施帅帅, 查俊杰. 船舶含油污水处理工程实例[J]. 水处理技术, 2022, 48(9): 138-141. |
Shi S S, Zha J J. Examples of treatment projects for ship oily wastewater[J]. Technology of Water Treatment, 2022, 48(9): 138-141. | |
99 | 任涵. 光伏行业高含盐废水“零排放”MVR蒸发结晶工艺及渣盐提纯[D]. 武汉: 中南民族大学, 2019. |
Ren H. Study on “zero-discharge”MVR evaporation crystallization process and purification of slag salt in high-salt wastewater of photovoltaic industry[D]. Wuhan: South-Central University for Nationalities, 2019. | |
100 | 徐超, 丁宁, 栗文明. SWRO+MVR工艺处理净水厂浓盐水零排放工程设计[J]. 工业水处理, 2020, 40(9): 112-115. |
Xu C, Ding N, Li W M. A combined process of SWRO and MVR design for zero-discharge project for concentrated water of a water purification plant[J]. Industrial Water Treatment, 2020, 40(9): 112-115. | |
101 | 王海元. 浅谈多晶硅高盐水的处理工艺及运行情况[J]. 中国井矿盐, 2020, 51(4): 1-3, 6. |
Wang H Y. A brief discussion on the treatment technology and operation of polysilicon high brine[J]. China Well and Rock Salt, 2020, 51(4): 1-3, 6. | |
102 | 姚现召, 姚雷, 张帆. MVR热泵技术在硫酸镍蒸发中的工业应用[J]. 中国资源综合利用, 2018, 36(12): 163-165. |
Yao X Z, Yao L, Zhang F. MVR technology in the application of nickel sulfate evaporation crystallization[J]. China Resources Comprehensive Utilization, 2018, 36(12): 163-165. | |
103 | 柳涛, 徐鑫. 汽提+反渗透膜+MVR工艺处理三元前体废水研究[J]. 工业水处理, 2019, 39(8): 100-102. |
Liu T, Xu X. Study on treatment of ternary precursor wastewater by stripping+reverse osmosis+MVR process[J]. Industrial Water Treatment, 2019, 39(8): 100-102. | |
104 | 秦佩, 吴晓伟. MVR技术在电池材料废水资源化利用中的应用[J]. 山东化工, 2020, 49(13): 215-217. |
Qin P, Wu X W. Application of MVR technology in the utilization of waste water from battery materials[J]. Shandong Chemical Industry, 2020, 49(13): 215-217. | |
105 | 涂凯. 某氟化工企业含氟废水处理“零排放及资源回收”工程实例[J]. 皮革制作与环保科技, 2021, 2(23): 12-14. |
Tu K. An engineering example of “zero discharge and resource recovery” of fluorine containing wastewater treatment in a fluorine chemical enterprise[J]. Leather Manufacture and Environmental Technology, 2021, 2(23): 12-14. | |
106 | 赵磊. 乳品MVR(机械蒸汽再压缩)蒸发器设计[D]. 大连: 大连工业大学, 2014. |
Zhao L. Design of dairy MVR (mechanical vapor recompression) evaporator[D]. Dalian: Dalian Polytechnic University, 2014. | |
107 | 马煜, 魏港, 李伟, 等. 浅析MVR降膜蒸发浓缩系统的特点及其在中药生产中的应用[J]. 机电信息, 2021(28): 69-70. |
Ma Y, Wei G, Li W, et al. Analysis on the characteristics of MVR falling film evaporation concentration system and its application in the production of traditional Chinese medicine[J]. Mechanical and Electrical Information, 2021(28): 69-70. | |
108 | 罗会东. 降膜式MVR蒸发器用于再造烟叶浓缩液制备的工程应用[J]. 中国设备工程, 2021(5): 104-105. |
Luo H D. Engineering application of falling film MVR evaporator in preparation of reconstituted tobacco concentrate[J]. China Plant Engineering, 2021(5): 104-105. | |
109 | 李强, 韩旭, 吕宏卿, 等. 高氯环境下MVR废水处理装备材料的腐蚀与防护[J]. 工业水处理, 2020, 40(9): 7-11. |
Li Q, Han X, Lv H Q, et al. Corrosion and protection of mechanical vapor recompression distillation wastewater treatment equipment materials under high chlorine environment[J]. Industrial Water Treatment, 2020, 40(9): 7-11. | |
110 | 汪超勤. MVR在硫酸铜蒸发中的应用[J]. 世界有色金属, 2022(14): 190-192. |
Wang C Q. Application of MVR in copper sulfate evaporation[J]. World Nonferrous Metals, 2022(14): 190-192. | |
111 | 滕丽. MVR技术在含盐废水处理领域的运用策略[J]. 环境与发展, 2020, 32(11): 75-76. |
Teng L. Application strategy of MVR technology in salt wastewater treatment[J]. Environment and Development, 2020, 32(11): 75-76. | |
112 | Zhang H F, Zhang Z T, Tong L G, et al. A novel mechanical vapor compression vacuum belt drying system: model development, experimental verification and performance prediction[J]. Energy Conversion and Management, 2022, 269: 116108. |
113 | Chen L J, Ye Q, Feng S T, et al. Investigation about energy-saving for the isobutyl acetate synthesis in a reactive divided-wall column via vapor recompression heat pump[J]. Chemical Engineering and Processing - Process Intensification, 2020, 147: 107783. |
114 | 赵林, 吴小华, 孙东亮, 等. 乙醇超重力MVR 热泵精馏系统仿真及优化研究[J]. 工程热物理学报, 2022, 43(3): 679-684. |
Zhao L, Wu X H, Sun D L, et al. Simulation and optimization study of ethanol-water high gravity MVR heat pump distillation system[J]. Journal of Engineering Thermophysics, 2022, 43(3): 679-684. | |
115 | Chen L J, Ye Q, Jiang Z Y, et al. Novel methodology for determining the optimal vapor recompressed assisted distillation process based on economic and energy efficiency[J]. Separation and Purification Technology, 2020, 251: 117393. |
116 | 吴迪, 胡斌, 王如竹, 等. 水工质热泵多种循环的理论研究与性能对比[J]. 化工学报, 2021, 72(S1): 236-243. |
Wu D, Hu B, Wang R Z, et al. Theoretical study and performance comparison of different heat pump cycles using water as working fluid[J]. CIESC Journal, 2021, 72(S1): 236-243. | |
117 | Wu D, Jiang J T, Hu B, et al. Experimental investigation on the performance of a very high temperature heat pump with water refrigerant[J]. Energy, 2020, 190: 116427. |
118 | Wu D, Yan H Z, Hu B, et al. Modeling and simulation on a water vapor high temperature heat pump system[J]. Energy, 2019, 168: 1063-1072. |
119 | 梁政, 申江, 魏国东, 等. 采用喷水降温螺杆压缩机的水蒸气热泵性能研究[J]. 热能动力工程, 2021, 36(5): 82-89. |
Liang Z, Shen J, Wei G D, et al. Study on the performance of water vapor heat pump system with water spray cooling screw compressor[J]. Journal of Engineering for Thermal Energy and Power, 2021, 36(5): 82-89. | |
120 | 李帅旗, 王汉治, 冯自平, 等. 耦合过热二次蒸气干燥的MVR 蒸发结晶系统热力性能分析[J]. 化工进展, 2020, 39(2): 439-445. |
Li S Q, Wang H Z, Feng Z P, et al. Performance analysis of a MVR evaporative crystallization system coupled with super-heated steam drying technology[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 439-445. | |
121 | 刘平元, 李昂, 赵亮. 基于机械蒸汽再压缩的两级污泥干化系统的模拟研究[J]. 节能, 2021, 40(12): 60-63. |
Liu P Y, Li A, Zhao L. A numerical study of the two-stage sludge drying system based on mechanical vapor recompression[J]. Energy Conservation, 2021, 40(12): 60-63. | |
122 | 赵红涛, 王树民, 张曼. 低能耗碳捕集技术及燃煤机组热经济性研究[J]. 现代化工, 2021, 41(1): 210-214. |
Zhao H T, Wang S M, Zhang M. Research on low energy consumption CO2 capture technology and thermal economy of coal-fired units[J]. Modern Chemical Industry, 2021, 41(1): 210-214. | |
123 | Li T C, Yang C N, Tantikhajorngosol P, et al. Comparative desorption energy consumption of post-combustion CO2 capture integrated with mechanical vapor recompression technology[J]. Separation and Purification Technology, 2022, 294: 121202. |
124 | Si Z T, Han D, Xiang J W. Experimental investigation on the mechanical vapor recompression evaporation system coupled with multiple vacuum membrane distillation modules to treat industrial wastewater[J]. Separation and Purification Technology, 2021, 275: 119178. |
125 | Si Z T, Han D, Xing Y L, et al. Experimental and numerical study on thermodynamic characteristics of a vacuum membrane distillation system based on mechanical vapor recompression for sulfuric acid waste[J]. Chemical Engineering and Processing - Process Intensification, 2022, 174: 108862. |
126 | 张化福, 杨俊玲, 张振涛, 等. 单螺杆压缩机系统及双效蒸发系统: 211082270U[P]. 2020-07-24. |
Zhang H F, Yang J L, Zhang Z T, et al. Single screw rod compressor system, starting method and double-effect evaporation system: 211082270U[P]. 2020-07-24. | |
127 | 张化福, 张振涛, 杨鲁伟, 等. 撬装式MVR蒸发装置: 109364506A[P]. 2019-02-22. |
Zhang H F, Zhang Z T, Yang L W, et al. Skid-mounted MVR (mechanical vapor recompression) evaporation device: 109364506A[P]. 2019-02-22. | |
128 | 张化福, 徐鹏, 杨俊玲, 等. 真空带式干燥系统: 211782579U[P]. 2020-10-27. |
Zhang H F, Xu P, Yang J L, et al. Vacuum belt type drying system: 211782579U[P]. 2020-10-27. | |
129 | 张化福, 杨俊玲, 张钰, 等. 有机溶媒精馏回收装置: 110115852A[P]. 2019-08-13. |
Zhang H F, Yang J L, Zhang Y, et al. Organic solvent rectification and recovery device: 110115852A[P]. 2019-08-13. | |
130 | Yang J L, Zhang C, Zhang Z T, et al. Study on mechanical vapor recompression system with wet compression single screw compressor[J]. Applied Thermal Engineering, 2016, 103: 205-211. |
131 | 侯超, 张化福, 张钰, 等. 核电站放射性废液处理过程采用机械蒸汽再压缩技术特性研究[J]. 现代化工, 2018, 38(2): 158-161. |
Hou C, Zhang H F, Zhang Y, et al. Characteristics of mechanical vapor recompression technology for treatment of liquid radioactive wastes in nuclear power stations[J]. Modern Chemical Industry, 2018, 38(2): 158-161. | |
132 | Xu P, Zhang Z T, Peng X Y, et al. Energy, exergy and economic analysis of a vacuum belt drying system integrated with mechanical vapor recompression (MVR) for aqueous extracts drying[J]. International Journal of Refrigeration, 2023, 145: 96-104. |
133 | 张钰. MVR热泵精馏系统模拟及实验研究[D]. 北京: 中国科学院大学, 2017. |
Zhang Y. Simulation and experimental study on MVR heat pump distillation system[D]. Beijing: University of Chinese Academy of Sciences, 2017. | |
134 | 杨德明, 冷冰沁, 李涛, 等. 基于TVR和MVR热泵技术的苦卤水双效蒸发工艺研究[J]. 现代化工, 2021, 41(8): 230-235. |
Yang D M, Leng B Q, Li T, et al. TVR and MVR heat pump technologies based double-effect evaporation process for bittern[J]. Modern Chemical Industry, 2021, 41(8): 230-235. | |
135 | Han D, Chen J J, Zhou T H, et al. Experimental investigation of a batched mechanical vapor recompression evaporation system[J]. Applied Thermal Engineering, 2021, 192: 116940. |
136 | Yang D M, Wan D H, Yun Y, et al. Energy-saving distillation process for mixed trichlorobenzene based on ORC coupled MVR heat pump technology[J]. Energy, 2023, 262: 125565. |
137 | 孙健, 马世财, 霍成, 等. 基于水蒸气工质新型压缩-吸收式热泵循环性能分析[J]. 太阳能学报, 2022, 43(10): 15-20. |
Sun J, Ma S C, Huo C, et al. Performance analysis of new compression absorption heat pump cycle based on steam working medium[J]. Acta Energiae Solaris Sinica, 2022, 43(10): 15-20. | |
138 | Su W, Ma D X, Lu Z F, et al. A novel absorption-based enclosed heat pump dryer with combining liquid desiccant dehumidification and mechanical vapor recompression: case study and performance evaluation[J]. Case Studies in Thermal Engineering, 2022, 35: 102091. |
139 | 王刚, 郝亮, 张冠锋, 等. 基于风能利用的机械蒸汽压缩海水淡化系统模拟[J]. 热科学与技术, 2017, 16(1): 40-46. |
Wang G, Hao L, Zhang G F, et al. System simulation of mechanical vapor compression seawater desalination plant using wind power[J]. Journal of Thermal Science and Technology, 2017, 16(1): 40-46. | |
140 | 孙峰, 王刚, 郝亮, 等. 机械蒸汽压缩机模型及其与风力发电机耦合模拟研究[J]. 热科学与技术, 2017, 16(5): 418-424. |
Sun F, Wang G, Hao L, et al. Modeling study of mechanical vapor compressor and its coupling with wind power generator[J]. Journal of Thermal Science and Technology, 2017, 16(5): 418-424. | |
141 | Ibrahimi M, Arbaoui A, Aoura Y. Design analysis of MVC desalination unit powered by a grid connected photovoltaic system[J]. Energy Procedia, 2017, 139: 524-529. |
142 | Farahat M A, Fath H E S, EI-Sharkawy I I, et al. Energy/exergy analysis of solar driven mechanical vapor compression desalination system with nano-filtration pretreatment[J]. Desalination, 2021, 509: 115078. |
[1] | Xinrui ZHANG, Xuemei CHEN. CNT/PVA@carbon-cloth membrane for performance study of solar and electric-driven interfacial evaporation [J]. CIESC Journal, 2024, 75(3): 1028-1039. |
[2] | Mingcheng SHAO, Yugui PAN, Zengli WANG, Qiang ZHAO. Study on the thermal properties of CO2/CH4 mixtures in the theoretical trans-critical pressurization process [J]. CIESC Journal, 2024, 75(10): 3742-3751. |
[3] | Yudan WANG, Chen XU, Da RUAN, Jiang CHUN, Xuehu MA. Heat transfer characteristics of capillary pumping-replenishment evaporation on nanowire clusters surfaces with V-grooves [J]. CIESC Journal, 2024, 75(10): 3424-3436. |
[4] | Xin WU, Jianying GONG, Long JIN, Yutao WANG, Ruining HUANG. Study on the transportation characteristics of droplets on the aluminium surface under ultrasonic excitation [J]. CIESC Journal, 2023, 74(S1): 104-112. |
[5] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[6] | Lisen BI, Bin LIU, Hengxiang HU, Tao ZENG, Zhuorui LI, Jianfei SONG, Hanming WU. Molecular dynamics study on evaporation modes of nanodroplets at rough interfaces [J]. CIESC Journal, 2023, 74(S1): 172-178. |
[7] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[8] | Jingwei CHAO, Jiaxing XU, Tingxian LI. Investigation on the heating performance of the tube-free-evaporation based sorption thermal battery [J]. CIESC Journal, 2023, 74(S1): 302-310. |
[9] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[10] | Ye XU, Wenjun HUANG, Junpeng MI, Chuanchuan SHEN, Jianxiang JIN. Surge diagnosis method of centrifugal compressor based on multi-source data fusion [J]. CIESC Journal, 2023, 74(7): 2979-2987. |
[11] | Yuanyuan ZHANG, Jiangyuan QU, Xinxin SU, Jing YANG, Kai ZHANG. Gas-liquid mass transfer and reaction characteristics of SNCR denitration in CFB coal-fired unit [J]. CIESC Journal, 2023, 74(6): 2404-2415. |
[12] | Zhengtao LI, Zhijie YUAN, Gaohong HE, Xiaobin JIANG. Study of the mechanism of internal circulation regulation during evaporation of NaCl droplets on hydrophobic interface [J]. CIESC Journal, 2023, 74(5): 1904-1913. |
[13] | Simin YI, Yali MA, Weiqiang LIU, Jinshuai ZHANG, Yan YUE, Qiang ZHENG, Songyan JIA, Xue LI. Study on ammonia evaporation and hydration kinetics of microcrystalline magnesite [J]. CIESC Journal, 2023, 74(4): 1578-1586. |
[14] | Ningguang CHEN, Yunhua GAN. Study on evaporation and heat transfer of charged sessile droplet based on lattice Boltzmann method [J]. CIESC Journal, 2023, 74(12): 4829-4839. |
[15] | Xinwei MA, Xingsen MU, Zhu LONG, Shengqiang SHEN. Prediction of heat transfer coefficient of horizontal tube falling film evaporation based on GA-BP neural network [J]. CIESC Journal, 2023, 74(12): 4840-4851. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 689
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 370
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||