CIESC Journal ›› 2020, Vol. 71 ›› Issue (S2): 201-209.DOI: 10.11949/0438-1157.20200610
• Separation engineering • Previous Articles Next Articles
Bin WANG(),Cong SHEN,Jiayin WANG,Jingxuan YANG(),Xiaogang HAO
Received:
2020-05-18
Revised:
2020-07-06
Online:
2020-11-06
Published:
2020-11-06
Contact:
Jingxuan YANG
通讯作者:
杨景轩
作者简介:
王斌(1993—),男,硕士研究生,基金资助:
CLC Number:
Bin WANG, Cong SHEN, Jiayin WANG, Jingxuan YANG, Xiaogang HAO. Analysis on concentration distribution and trajectory of fine particles in cyclone separator[J]. CIESC Journal, 2020, 71(S2): 201-209.
王斌, 沈聪, 王佳音, 杨景轩, 郝晓刚. 旋风分离器内细颗粒浓度分布及运动分析[J]. 化工学报, 2020, 71(S2): 201-209.
Add to citation manager EndNote|Ris|BibTeX
1 | 陈兆辉, 高士秋, 许光文. 煤热解过程分析与工艺调控方法[J]. 化工学报, 2017, 68(10): 3693-3707. |
Chen Z H, Gao S Q, Xu G W. Analysis and control methods of coal pyrolysis process [J]. CIESC Journal, 2017, 68(10): 3693-3707. | |
2 | 张生军, 郑化安, 陈静升, 等. 煤热解工艺中挥发分除尘技术的现状分析及建议[J]. 洁净煤技术, 2014, 20(3): 79-83. |
Zhang S J, Zheng H A, Chen J S, et al. Status analysis and improvement measures of volatile dust removal technology in coal pyrolysis process[J]. Clean Coal Technology, 2014, 20(3): 79-83. | |
3 | 时铭显, 汪云瑛. PV型旋风分离器尺寸设计的特点[J]. 石油化工设备技术, 1992, 13(4): 14-18. |
Shi M X, Wang Y Y. Features of size design of PV cyclone separator [J]. Petro-Chemical Equipment Technology, 1992, 13(4): 14-18. | |
4 | 王伟东, 汪洋, 马强, 等. 页岩灰与催化裂化催化剂细粉旋风分离性能的对比试验研究[J]. 中国粉体技术, 2012, 18(4): 70-76. |
Wang W D, Wang Y, Ma Q, et al. Contrast experiments on cyclone separator performances of shale ash and FCC fine catalysts [J]. China Powder Science and Technology, 2012, 18(4): 70-76. | |
5 | 黄雷, 张玉明, 张亮, 等. 页岩灰和FCC催化剂调控油页岩热解产物二次反应特性[J]. 化工学报, 2017, 68(10): 3770-3778. |
Huang L, Zhang Y M, Zhang L, et al. Effects of shale ash and FCC catalyst on adjusting secondary reaction of volatiles in oil shale pyrolysis [J]. CIESC Journal, 2017, 68(10): 3770-3778. | |
6 | 孙国刚, 时铭显. 提高旋风分离器捕集细粉效率的技术研究进展[J]. 现代化工, 2008, 28(7): 64-69. |
Sun G G, Shi M X. Progress in improving removal efficiency of gas cyclones for fine particles [J]. Modern Chemical Industry, 2008, 28(7): 64-69. | |
7 | 宋健斐, 魏耀东, 时铭显. 旋风分离器内颗粒浓度场的数值模拟[J]. 中国石油大学学报(自然科学版), 2008, 32(1): 90-94. |
Song J F, Wei Y D, Shi M X. Numerical simulation on particle concentration distribution in cyclone separator [J]. Journal of China University of Petroleum (Edition of Natural Science), 2008, 32(1): 90-94. | |
8 | 万古军, 孙国刚, 魏耀东, 等. 压力对旋风分离器内颗粒浓度分布影响的模拟[J]. 石油学报(石油加工), 2008, 24(6): 689-696. |
Wan G J, Sun G G, Wei Y D, et al. Simulation of influence of pressure on solids concentration distribution in cyclone separator [J]. Acta Petrolei Sinica (Petroleum Processing Section), 2008, 24(6): 689-696. | |
9 | 万古军, 魏耀东, 薛晓虎, 等. 温度对旋风分离器内颗粒浓度分布影响的模拟[J]. 燃烧科学与技术, 2008, 14(6): 562-568. |
Wan G J, Wei Y D, Xue X H, et al. Simulation of influence of temperature on solids concentration distribution in cyclone separator [J]. Journal of Combustion Science and Technology, 2008, 14(6): 562-568. | |
10 | Xue X H, Sun G G, Wan G J, et al. Numerical simulation of particle concentration in a gas cyclone separator [J]. Petroleum Science, 2007, 4(3): 76-83. |
11 | 薛晓虎, 孙国刚, 时铭显. 旋风分离器内颗粒浓度分布特性的数值分析[J]. 机械工程学报, 2007, 43(12): 26-33. |
Xue X H, Sun G G, Shi M X. Numerical simulation on particle concentration distribution in cyclone separator [J]. Journal of Mechanical Engineering, 2007, 43(12): 26-33. | |
12 | Wan G J, Sun G G, Xue X H, et al. Solids concentration simulation of different size particles in a cyclone separator [J]. Powder Technology, 2008, 183(1): 94 -104. |
13 | 吴小林, 黄学东, 时铭显. 旋风分离器的颗粒浓度分布的实验研究[J]. 石油大学学报, 1993, 17(4): 54-59. |
Wu X L, Huang X D, Shi M X. Experimental research on particle concentration distribution in cyclone [J]. Journal of China University of Petroleum, 1993, 17(4): 54-59. | |
14 | 吴飞雪, 董守平, 时铭显. 激光粒子成像技术测定旋风分离器内颗粒浓度场的实验研究[J]. 石油大学学报(自然科学版), 2000, 24(26): 72-76. |
Wu F X, Dong S P, Shi M X. Experimental study on particle concentration distribution in a cyclone by particle image technology [J]. Journal of China University of Petroleum (Edition of Natural Science), 2000, 24(26): 72-76. | |
15 | Hoffmann A C, Peng W, Dries H W A, et al. Advantages and risks in increasing cyclone separator length [J]. AIChE Journal, 2001, 47(11): 2452-2460. |
16 | 吴小林, 熊至宜, 姬忠礼, 等. 旋风分离器旋进涡核的数值模拟[J]. 化工学报, 2007, 58(2): 383-390. |
Wu X L, Xiong Z Y, Ji Z L, et al. Numerical simulation of precessing vortex core in cyclone separator [J]. Journal of Chemical Industry and Engineering (China), 2007, 58(2): 383-390. | |
17 | Wasilewskia M, Brar L S. Effect of the inlet duct angle on the performance of cyclone separators [J]. Separation and Purification Technology, 2019, 213(15): 19-33. |
18 | Zhou F Q, Sun G G, Zhang Y M, et al. Experimental and CFD study on the effects of surface roughness on cyclone performance [J]. Separation and Purification Technology, 2018, 193(20): 175-183. |
19 | Nassaj O R, Toghraie D, Afrand M. Effects of multi inlet guide channels on the performance of a cyclone separator [J]. Powder Technology, 2019, 356: 353-372. |
20 | Lim J H, Park S I, Lee H J, et al. Performance evaluation of a tangential cyclone separator with additional inlets on the cone section [J]. Powder Technology, 2020, 359: 118-125. |
21 | Li Q, Wang Q G, Xu W W, et al. Experimental and computational analysis of a cyclone separator with a novel vortex finder [J]. Powder Technology, 2020, 360: 398-410. |
22 | Fatahian H, Fatahian E, Nimvari M E. Improving efficiency of conventional and square cyclones using different configurations of the laminarizer [J]. Powder Technology, 2018, 339: 232-243. |
23 | He M Y, Zhang Y H, Ma L, et al. Study on flow field characteristics in a reverse rotation cyclone with PIV [J]. Chemical Engineering & Processing: Process Intensification, 2018, 126: 100-107. |
24 | 王璐, 张兴芳, 董振洲, 等.旋风分离器入口形式对内流场非稳态特性的影响[J].化工学报, 2018, 69(8): 3488-3501. |
Wang L, Zhang X F, Dong Z Z, et al. Effect of inlet structure on transient properties of gas flow in cyclone separator[J]. CIESC Journal, 2018, 69(8): 3488-3501. | |
25 | 黄学东. PV型旋风分离器内颗粒浓度分布的研究 [D]. 北京: 中国石油大学(北京), 1989. |
Huang X D. Study on particle concentration distribution in PV cyclone separator[D]. Beijing: China University of Petroleum, 1989. | |
26 | Peng W, Hoffmann A C, Dries H W A, et al. Experimental study of the vortex end in centrifugal separators: the nature of the vortex end[J]. Chemical Engineering Science, 2005, 60(24): 6919-6928. |
27 | Yang J X, Dong Z Z, Shen C, et al. Analysis of effect of radial confluence flow on vortex core motion[J]. Powder Technology, 2019, 356: 871-879. |
28 | 付烜, 孙国刚, 刘佳, 等. 旋风分离器短路流的估算问题及其数值计算方法的讨论[J]. 化工学报, 2011, 62(9): 2535-2540. |
Fu X, Sun G G, Liu J, et al. Discuss on estimation difficulties and numerical computation methods for short circuit flow in cyclone separators[J]. CIESC Journal, 2011, 62(9): 2535-2540. | |
29 | Hoffmann A C, Stein L E. Gas Cyclones and Swirl Tubes Principles, Design, and Operation [M]. Berlin, Heidelberg: Springer-Verlag, 2007. |
30 | 沈聪, 董振洲, 王佳音, 等. 稳涡内构件对旋风分离器内流场和性能的影响[J]. 太原理工大学学报, 2020, 51(1): 66-72. |
Shen C, Dong Z Z, Wang J Y, et al. Effect of installation of apex cone on flow field and performance in cyclone separator [J]. Journal of Taiyuan University of Technology, 2020, 51(1): 66-72. |
[1] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[2] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[3] | Xianheng YI, Wu ZHOU, Xiaoshu CAI, Tianyi CAI. Measurable range of nanoparticle concentration using optical fiber backward dynamic light scattering [J]. CIESC Journal, 2023, 74(8): 3320-3328. |
[4] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[5] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[6] | Rubin ZENG, Zhongjie SHEN, Qinfeng LIANG, Jianliang XU, Zhenghua DAI, Haifeng LIU. Study of the sintering mechanism of Fe2O3 nanoparticles based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3353-3365. |
[7] | Linjing YUE, Yihan LIAO, Yuan XUE, Xuejie LI, Yuxing LI, Cuiwei LIU. Study on influence of pit defects on cavitation flow characteristics of throat of thick orifice plates [J]. CIESC Journal, 2023, 74(8): 3292-3308. |
[8] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[9] | Jinming GAO, Yujiao GUO, Chenglin E, Chunxi LU. Study on the separation characteristics of a downstream gas-liquid vortex separator in a closed hood [J]. CIESC Journal, 2023, 74(7): 2957-2966. |
[10] | Xiaokun HE, Rui LIU, Yuan XUE, Ran ZUO. Review of gas phase and surface reactions in AlN MOCVD [J]. CIESC Journal, 2023, 74(7): 2800-2813. |
[11] | Mengbin ZHANG, Rui LI, Jiajie ZHANG, Suxia MA, Jiansheng ZHANG. Experimental study on dielectric properties of coal ash based on coplanar capacitance principle [J]. CIESC Journal, 2023, 74(7): 3028-3037. |
[12] | Yong LI, Jiaqi GAO, Chao DU, Yali ZHAO, Boqiong LI, Qianqian SHEN, Husheng JIA, Jinbo XUE. Construction of Ni@C@TiO2 core-shell dual-heterojunctions for advanced photo-thermal catalytic hydrogen generation [J]. CIESC Journal, 2023, 74(6): 2458-2467. |
[13] | Juhui CHEN, Qian ZHANG, Lingfeng SHU, Dan LI, Xin XU, Xiaogang LIU, Chenxi ZHAO, Xifeng CAO. Study on flow characteristics of nanoparticles in a rotating fluidized bed based on DEM method [J]. CIESC Journal, 2023, 74(6): 2374-2381. |
[14] | Daoyin LIU, Bingqi CHEN, Zuyang ZHANG, Yan WU. Effect of agglomerate structure on drag force by numerical simulation [J]. CIESC Journal, 2023, 74(6): 2351-2362. |
[15] | Chenxi LI, Yongfeng LIU, Lu ZHANG, Haifeng LIU, Jin’ou SONG, Xu HE. Quantum chemical analysis of n-heptane combustion mechanism under O2/CO2 atmosphere [J]. CIESC Journal, 2023, 74(5): 2157-2169. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||