1 |
Verma B, Padhy P K. Indirect IMC-PID controller design[J]. IET Control Theory & Applications, 2019, 13(2): 297-305.
|
2 |
LAfflitto A, Blackford T A. Constrained dynamical systems, robust model reference adaptive control, and unreliable reference signals[J]. International Journal of Control, 2020, 93(5): 1039-1052.
|
3 |
Capaci R B, Vaccari M, Scali C, et al. Enhancing MPC formulations by identification and estimation of valve stiction[J]. Journal of Process Control, 2019, 81: 31-39.
|
4 |
方崇智, 萧德云. 过程辨识[M]. 北京: 清华大学出版社, 1988.
|
|
Fang C Z, Xiao D Y. Processing Identification[M]. Beijing: Tsinghua University Press, 1988.
|
5 |
Cerone V, Razza V, Regruto D. Set-membership errors-in-variables identification of MIMO linear systems[J]. Automatica, 2018, 90: 25-37.
|
6 |
Cherif I, Fnaiech F. Nonlinear system identification with a real–doded genetic algorithm (RCGA)[J]. International Journal of Applied Mathematics and Computer Science, 2015, 25(4): 863-875.
|
7 |
林海龙. 基于深度神经网络的非线性系统辨识研究[D]. 广州: 广州大学, 2019.
|
|
Lin H L. Research in nonlinear system identification based in deep neural network[D]. Guangzhou : Guangzhou University, 2019.
|
8 |
Shabnam Y, Morteza M G. A novel gas turbine fault detection and identification strategy based on hybrid dimensionality reduction and uncertain rule-based fuzzy logic[J]. Computers in Industry, 2020, 115: 103131.
|
9 |
Heidari Z, Roe D R, Galindo-Murillo R, et al. Using wavelet analysis to assist in identification of significant events in molecular dynamics simulations[J]. Journal of Chemical Information and Modeling, 2016, 56(7): 1282-1291.
|
10 |
武东升, 王玉芹, 张亮亮, 等. 先进控制系统在乙烯裂解炉上的应用[J]. 计算机与应用化学, 2017, 34(9): 729-734.
|
|
Wu D S, Wang Y Q, Zhang L L, et al. The application of advanced control system in the ethylene cracking furnace[J]. Computers and Applied Chemistry, 2017, 34(9): 729-734.
|
11 |
马国英, 王冲. 丁二烯装置脱重脱轻精馏单元先进控制研究与应用[J]. 石油化工自动化, 2017, 53(2): 60-62.
|
|
Ma G Y, Wang C. Research and application of advanced control in heavy and light distillation unit of butadiene plant[J]. Automation in Petro-Chemical Industry, 2017, 53(2): 60-62.
|
12 |
Shardt Y A W, Huanag B. Data quality assessment of routine operating data for process identification[J]. Computers and Chemical Engineering, 2013, 55(8): 19-27.
|
13 |
Rubio J J, Pan Y P, Lughofer E, et al. Fast learning of neural networks with application to big data processes[J]. Neurocomputing, 2019, 390: 294-296.
|
14 |
Narendra K S, Parthasarathy K. Identification and control of dynamical systems using neural networks[J]. IEEE Transactions on nNeural Networks, 1990, 1(1): 4-27.
|
15 |
Nidhil K J, Sreeraj S, Vijay B, et al. System identification using artificial neural network[C]// International Conference on Circuit. IEEE, 2015: 1-4.
|
16 |
于吉, 吕剑虹. 基于循环神经网络的动态模型辨识[J]. 工业控制计算机, 2018, 31(3): 151-152+155.
|
|
Yu J, Lyu J H. A dynamic model based on recurrent neural network[J]. Industrial Control Computer, 2018, 31(3): 151-152+155.
|
17 |
刘军, 何星, 许晓鸣. 基于神经网络非线性模型的多级工作点阶跃响应扩展DMC预测控制[J]. 控制与决策, 2000, (3): 342-344.
|
|
Liu J, He X, Xu X M. Extension of DMC predictive control using neural network based nonlinear models and multi-step operation point response[J]. Control and Decision, 2000, (3): 342-344.
|
18 |
耿志强, 徐猛, 朱群雄, 等. 基于深度学习的复杂化工过程软测量模型研究与应用[J]. 化工学报, 2019, 70(2): 564-571.
|
|
Geng Z Q, Xu M, Zhu Q X, et al. Research and application of soft measurement model for complex chemical processes based on deep learning[J]. CIESC Journal, 2019, 70(2): 564-571.
|
19 |
Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
|
20 |
Cai M, Liu J. Maxout neurons for deep convolutional and LSTM neural networks in speech recognition[J]. Speech Communication, 2016, 77(C): 53-64.
|
21 |
Tang Y, Yang J Y, CHEN J. Comparative research on influencing factors of LSTM deep neural network in stock market time series prediction[J]. Research in Economics and Management, 2019, 4(1): 84-99.
|
22 |
Zhang X, Chen M H, Qin Y. NLP-QA framework based on LSTM-RNN[C]//2018 2nd International Conference on Data Science and Business Analytics. IEEE Computer Society, 2018, 1: 307-311.
|
23 |
Lipton Z C, Berkowitz J, Elkan C. A critical review of recurrent neural networks for sequence learning[J]. Computer Science, 2015, ArXiV ID:1506. 00019.
|
24 |
张祥. 基于LSTM和动态模型的化工过程混合故障诊断[D]. 青岛: 青岛科技大学, 2018.
|
|
Zhang X. Hybrid fault diagnosis method of chemical process based on LSTM and dynamic model[D]. Qingdao: Qingdao University of Science and Technology, 2018.
|
25 |
Tsinghua W K, Huang D, Yang F, et al. Soft sensor development and applications based on LSTM in deep neural networks[C]//IEEE Symposium Series on Computational Intelligence. IEEE, 2017.
|
26 |
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]// Advances in Neural Information Processing Systems 30 (NIPS 2017). Long Beach, CA, USA, 2017.
|
27 |
Feng Q, Gao C Q, Wang L, et al. Spatio-temporal fall event detection in complex scenes using attention guided LSTM[J]. Pattern Recognition Letters, 2020, 130: 242-249.
|
28 |
Zhang M X, Yang Y, Ji Y L, et al. Recurrent attention network using spatial-temporal relations for action recognition[J]. Signal Processing, 2018, 145: 137-145.
|
29 |
惠振东. TE化工过程优化控制仿真系统研究[D]. 北京: 北方工业大学, 2017.
|
|
Hui Z D. Research on simulation system of TE chemical process optimization control[D]. Beijing: North China University of Technology, 2017.
|
30 |
Croux C, Dehon C. Influence functions of the Spearman and Kendall correlation measures[J]. Statal Methods and Applications, 2010, 19(4): 497-515.
|
31 |
Kong J, Ji H B. Wireless sensor networks localization based on weighted DFP algorithm[J]. Computer Engineering, 2009, 35(21): 108-110.
|