CIESC Journal ›› 2020, Vol. 71 ›› Issue (12): 5672-5680.DOI: 10.11949/0438-1157.20200604
• Process system engineering • Previous Articles Next Articles
ZHAO Lijie(),WANG Jia,HUANG Mingzhong(),WANG Guogang
Received:
2020-05-18
Revised:
2020-08-31
Online:
2020-12-05
Published:
2020-12-05
Contact:
HUANG Mingzhong
通讯作者:
黄明忠
作者简介:
赵立杰(1972—),女,博士,教授,基金资助:
CLC Number:
ZHAO Lijie,WANG Jia,HUANG Mingzhong,WANG Guogang. Estimation of effluent quality index based on partial least squares stochastic configuration networks[J]. CIESC Journal, 2020, 71(12): 5672-5680.
赵立杰,王佳,黄明忠,王国刚. 基于偏最小二乘随机配置网络的污水水质指标估计[J]. 化工学报, 2020, 71(12): 5672-5680.
Add to citation manager EndNote|Ris|BibTeX
水质 指标 | 训练 | 测试 | L | ||||
---|---|---|---|---|---|---|---|
SCN | PLS-SCN | SCN | PLS-SCN | SCN | PLS-SCN | ||
BOD | 10 | 3.59 | 3.59 | 3.44 | 3.44 | 10 | 10 |
30 | 2.76 | 2.94 | 3.33 | 3.30 | 30 | 30 | |
50 | 2.16 | 2.77 | 3.79 | 3.36 | 50 | 50 | |
70 | 1.73 | 2.72 | 3.96 | 3.21 | 70 | 70 | |
90 | 1.40 | 2.64 | 3.92 | 3.31 | 90 | 90 | |
110 | 1.16 | 2.62 | 4.34 | 3.18 | 110 | 110 | |
130 | 0.96 | 2.59 | 4.48 | 3.18 | 130 | 130 | |
150 | 0.81 | 2.61 | 4.78 | 3.15 | 150 | 150 | |
170 | 0.67 | 2.63 | 5.25 | 3.19 | 170 | 170 | |
190 | 0.53 | 2.59 | 6.03 | 3.20 | 190 | 190 | |
NH | 10 | 3.57 | 3.66 | 3.25 | 3.33 | 10 | 10 |
30 | 2.53 | 2.69 | 2.80 | 2.81 | 30 | 30 | |
50 | 1.94 | 2.49 | 2.62 | 2.70 | 50 | 50 | |
70 | 1.60 | 2.43 | 2.82 | 2.65 | 70 | 70 | |
90 | 1.34 | 2.40 | 2.80 | 2.55 | 90 | 90 | |
110 | 1.12 | 2.35 | 3.51 | 2.49 | 110 | 110 | |
130 | 0.99 | 2.33 | 3.59 | 2.60 | 130 | 130 | |
150 | 0.85 | 2.34 | 3.82 | 2.53 | 150 | 150 | |
170 | 0.74 | 2.28 | 4.55 | 2.50 | 170 | 170 | |
190 | 0.64 | 2.35 | 5.37 | 2.47 | 189 | 190 | |
COD | 10 | 10.00 | 10.02 | 12.55 | 12.58 | 10 | 10 |
30 | 7.86 | 8.23 | 12.16 | 12.19 | 30 | 30 | |
50 | 6.54 | 7.60 | 12.80 | 12.34 | 50 | 50 | |
70 | 5.60 | 7.47 | 14.10 | 12.21 | 70 | 70 | |
90 | 4.73 | 7.34 | 14.77 | 11.97 | 90 | 90 | |
110 | 3.97 | 7.31 | 16.10 | 11.88 | 110 | 110 | |
130 | 3.40 | 7.29 | 18.02 | 11.84 | 130 | 130 | |
150 | 2.85 | 7.20 | 18.98 | 11.83 | 150 | 150 | |
170 | 2.39 | 7.15 | 20.50 | 11.93 | 170 | 170 | |
190 | 2.00 | 7.17 | 24.20 | 11.69 | 190 | 190 | |
SVI | 10 | 8.92 | 9.01 | 7.43 | 7.38 | 10 | 10 |
30 | 5.47 | 5.92 | 6.73 | 6.62 | 30 | 30 | |
50 | 4.02 | 5.45 | 7.17 | 6.58 | 50 | 50 | |
70 | 3.28 | 5.19 | 7.64 | 6.35 | 70 | 70 | |
90 | 2.63 | 5.10 | 7.71 | 6.14 | 90 | 90 | |
110 | 2.40 | 5.11 | 8.10 | 6.07 | 98 | 110 | |
130 | 2.40 | 5.03 | 8.31 | 5.99 | 98 | 130 | |
150 | 2.40 | 5.02 | 8.23 | 6.09 | 98 | 150 | |
170 | 2.40 | 4.98 | 8.47 | 5.95 | 99 | 170 | |
190 | 2.40 | 5.12 | 8.29 | 5.89 | 100 | 190 |
Table 1 RMSE comparison of effluent quality indexes for PLS-SCN and SCN model
水质 指标 | 训练 | 测试 | L | ||||
---|---|---|---|---|---|---|---|
SCN | PLS-SCN | SCN | PLS-SCN | SCN | PLS-SCN | ||
BOD | 10 | 3.59 | 3.59 | 3.44 | 3.44 | 10 | 10 |
30 | 2.76 | 2.94 | 3.33 | 3.30 | 30 | 30 | |
50 | 2.16 | 2.77 | 3.79 | 3.36 | 50 | 50 | |
70 | 1.73 | 2.72 | 3.96 | 3.21 | 70 | 70 | |
90 | 1.40 | 2.64 | 3.92 | 3.31 | 90 | 90 | |
110 | 1.16 | 2.62 | 4.34 | 3.18 | 110 | 110 | |
130 | 0.96 | 2.59 | 4.48 | 3.18 | 130 | 130 | |
150 | 0.81 | 2.61 | 4.78 | 3.15 | 150 | 150 | |
170 | 0.67 | 2.63 | 5.25 | 3.19 | 170 | 170 | |
190 | 0.53 | 2.59 | 6.03 | 3.20 | 190 | 190 | |
NH | 10 | 3.57 | 3.66 | 3.25 | 3.33 | 10 | 10 |
30 | 2.53 | 2.69 | 2.80 | 2.81 | 30 | 30 | |
50 | 1.94 | 2.49 | 2.62 | 2.70 | 50 | 50 | |
70 | 1.60 | 2.43 | 2.82 | 2.65 | 70 | 70 | |
90 | 1.34 | 2.40 | 2.80 | 2.55 | 90 | 90 | |
110 | 1.12 | 2.35 | 3.51 | 2.49 | 110 | 110 | |
130 | 0.99 | 2.33 | 3.59 | 2.60 | 130 | 130 | |
150 | 0.85 | 2.34 | 3.82 | 2.53 | 150 | 150 | |
170 | 0.74 | 2.28 | 4.55 | 2.50 | 170 | 170 | |
190 | 0.64 | 2.35 | 5.37 | 2.47 | 189 | 190 | |
COD | 10 | 10.00 | 10.02 | 12.55 | 12.58 | 10 | 10 |
30 | 7.86 | 8.23 | 12.16 | 12.19 | 30 | 30 | |
50 | 6.54 | 7.60 | 12.80 | 12.34 | 50 | 50 | |
70 | 5.60 | 7.47 | 14.10 | 12.21 | 70 | 70 | |
90 | 4.73 | 7.34 | 14.77 | 11.97 | 90 | 90 | |
110 | 3.97 | 7.31 | 16.10 | 11.88 | 110 | 110 | |
130 | 3.40 | 7.29 | 18.02 | 11.84 | 130 | 130 | |
150 | 2.85 | 7.20 | 18.98 | 11.83 | 150 | 150 | |
170 | 2.39 | 7.15 | 20.50 | 11.93 | 170 | 170 | |
190 | 2.00 | 7.17 | 24.20 | 11.69 | 190 | 190 | |
SVI | 10 | 8.92 | 9.01 | 7.43 | 7.38 | 10 | 10 |
30 | 5.47 | 5.92 | 6.73 | 6.62 | 30 | 30 | |
50 | 4.02 | 5.45 | 7.17 | 6.58 | 50 | 50 | |
70 | 3.28 | 5.19 | 7.64 | 6.35 | 70 | 70 | |
90 | 2.63 | 5.10 | 7.71 | 6.14 | 90 | 90 | |
110 | 2.40 | 5.11 | 8.10 | 6.07 | 98 | 110 | |
130 | 2.40 | 5.03 | 8.31 | 5.99 | 98 | 130 | |
150 | 2.40 | 5.02 | 8.23 | 6.09 | 98 | 150 | |
170 | 2.40 | 4.98 | 8.47 | 5.95 | 99 | 170 | |
190 | 2.40 | 5.12 | 8.29 | 5.89 | 100 | 190 |
建模方法 | RMSE | |||
---|---|---|---|---|
BOD | NH | COD | SVI | |
PLS | 3.36 | 3.48 | 12.90 | 6.67 |
PLS-ELM | 3.10 | 2.69 | 11.31 | 6.07 |
SVR | 3.43 | 3.52 | 13.26 | 6.37 |
PLS-NN | 3.12 | 3.13 | 11.40 | 7.62 |
PLS-SCN | 3.15 | 2.47 | 11.69 | 5.89 |
Table 2 Comparison of root mean square error of water quality index test performance of different modeling methods
建模方法 | RMSE | |||
---|---|---|---|---|
BOD | NH | COD | SVI | |
PLS | 3.36 | 3.48 | 12.90 | 6.67 |
PLS-ELM | 3.10 | 2.69 | 11.31 | 6.07 |
SVR | 3.43 | 3.52 | 13.26 | 6.37 |
PLS-NN | 3.12 | 3.13 | 11.40 | 7.62 |
PLS-SCN | 3.15 | 2.47 | 11.69 | 5.89 |
2 | 余杰, 田宁宁, 王凯军, 等. 中国城市污水处理厂污泥处理、处置问题探讨分析[J]. 环境工程学报, 2007, 1(1): 82-86. |
Yu J, Tian N N, Wang K J, et al. Analysis and discussion of sludge disposal and treatment of sewage treatment plants in China[J]. Chinese Journal of Environmental Engineering, 2007, 1(1): 82-86. | |
3 | Kabouris J C. Modeling, instrumentation, automation, and optimization of wastewater treatment facilities[J]. Water Environment Research, 1999, 70(4): 772-827. |
4 | 乌尔松. 污水处理系统的建模、诊断和控制[M]. 北京: 化学工业出版社, 2004. |
Urson. Modeling, Diagnosis and Control of Sewage Treatment System[M]. Beijing: Chemical Industry Press, 2004. | |
5 | Zhao L J, Yuan D C, Tang J, et al. Nonlinear robust PLS modeling of wastewater effluent quality indices[J]. Journal of Software, 2011, 6(6): 1067-1074. |
6 | 乔俊飞, 李瑞祥, 柴伟, 等. 基于PSO-ESN神经网络的污水BOD预测[J]. 控制工程, 2016, 23(4): 463-467. |
Qiao J F, Li R X, Chai W, et al. Prediction of BOD based on PSO-ESN neural network [J]. Control Engineering, 2016, 23(4): 463-467. | |
7 | Han H G, Liu Z, Ge L M, et al. Prediction of sludge bulking using the knowledge-leverage-based fuzzy neural network[J]. Water Science & Technology, 2018, 77(3/4): 617-627. |
8 | 赵立杰, 柴天佑, 黄肖玲. 城市污水处理过程综合自动化系统及其应用[J]. 计算机集成制造系统, 2005, 11(1): 138-144. |
Zhao L J, Chai T Y, Huang X L. Integrated automation system of municipal wastewater treatment plant and its applications[J]. Computer Integrated Manufacturing System, 2005, 11(1): 138-144. | |
9 | Mogens H, Willi G, Takahashi M, et al. Activated sludge model No. 2d, ASM2d[J]. Water Science & Technology, 1999, 39(1): 165-182. |
1 | Du X J, Hao X H, Li H J, et al. Study on modeling and simulation of wastewater biochemical treatment activated sludge process[J]. Asian Journal of Chemistry, 2011, 23(10): 4457-4460. |
10 | 黄道平, 刘乙奇, 李艳. 软测量在污水处理过程中的研究与应用[J]. 化工学报, 2011, 62(1): 1-9. |
Huang D P, Liu Y Q, Li Y. Soft sensor research and its application in wastewater treatment[J]. CIESC Journal, 2011, 62(1): 1-9. | |
11 | Sharmin R, Sundararaj U, Shah S, et al. Inferential sensors for estimation of polymer quality parameters: industrial application of a PLS-based soft sensor for a LDPE plant[J]. Chemical Engineering Science, 2006, 61(19): 6372-6384. |
12 | Duerrenmatt D J, Gujer W. Data-driven modeling approaches to support wastewater treatment plant operation[J]. Environmental Modeling & Software, 2012, 30: 47-56. |
13 | Zhao L J, Chai T Y. Wastewater BOD forecasting model for optimal operation using robust time-delay neural network[J]. Letter Notes in Computer Science, 2005, 3498: 1028-1033. |
14 | Woo S H, Jeon C O, Yun Y S, et al. On-line estimation of key process variables based on kernel partial least squares in an industrial cokes wastewater treatment plant[J]. Journal of Hazardous Materials, 2009, 161(1): 538-544. |
15 | Lee D S, Jeon C O, Park J M, et al. Hybrid neural network modeling of a full-scale industrial wastewater treatment process[J]. Biotechnology & Bioengineering, 2010, 78(6): 670-682. |
16 | Tomida S, Hanai T, Honda H, et al. Construction of COD simulation model for activated sludge process by recursive fuzzy neural network[J]. Journal of Bioscience and Bioengineering, 1999, 88(2): 215-220. |
17 | Fang F, Ni B J, Li W W, et al. A simulation-based integrated approach to optimize the biological nutrient removal process in a full-scale wastewater treatment plant[J]. Chemical Engineering Journal, 2011, 174(2/3): 635-643. |
18 | Zhao L J, Wang D H, Chai T Y. Estimation of effluent quality using PLS-based extreme learning machines[J]. Neural Computing & Applications, 2013, 22(3/4): 509-519. |
19 | Wang D H, Li M. Stochastic configuration networks: fundamentals and algorithms[J]. IEEE Transactions on Cybernetics, 2017, 47(10): 3466-3479. |
20 | 赵立杰. 生物脱氮污水处理过程建模和优化控制若干问题研究[D]. 沈阳: 东北大学, 2006. |
Zhao L J. Research on the issues of the modeling and optimization control for wastewater treatment plant with biological nitrogen removal[D]. Shenyang: Northeastern University, 2006. | |
21 | 高晓波. 分段进水AO生物脱氮工艺优化运行研究[D]. 西安: 长安大学, 2013. |
Gao X B. Study on the optimal operation of the step feeding AO nitrogen removal process[D]. Xian: Changan University, 2013. | |
22 | 赵立杰, 袁德成, 柴天佑. 基于多分类概率极限学习机的污水处理过程操作工况识别[J]. 化工学报, 2012, 63(10): 3173-3182. |
Zhao L J, Yuan D C, Chai T Y. Identification of wastewater operational conditions based on multi-classification probabilistic extreme learning machine[J]. CIESC Journal, 2012, 63(10): 3173-3182. | |
23 | Cao Z P, Li J, Zhang H. Influence of solid retention time on sludge characteristics and effluent quality in immersed membrane bioreactor [J]. Chinese Science Bulletin, 2008, 53(24): 3942-3950. |
24 | Doederer K, Gernjak W, Weinberg H S, et al. Factors affecting the formation of disinfection by-products during chlorination and chloramination of secondary effluent for the production of high quality recycled water[J]. Water Research, 2014, 48: 218-228. |
25 | 丛秋梅, 苑明哲, 王宏. 基于稳定Hammerstein模型的在线软测量建模方法及应用[J]. 化工学报, 2015, 66(4): 1378-1387. |
Cong Q M, Yuan M Z, Wang H. On-line soft sensor based on stable Hammerstein model and its applications[J]. CIESC Journal, 2015, 66(4): 1378-1387. | |
26 | Wang D H, Li M. Robust stochastic configuration networks with kernel density estimation for uncertain data regression[J]. Information Sciences, 2017, 412/413: 210-222. |
27 | Wang D H, Cui C H. Stochastic configuration networks ensemble with heterogeneous features for large-scale data analytics[J]. Information Sciences, 2017, 417: 55-71. |
28 | Barker M, Rayens W. Partial least squares for discrimination[J]. Journal of Chemometrics, 2003, 17(3): 166-173. |
29 | Geladi P, Kowalski B R. Partial least-squares regression: a tutorial[J]. Analytica Chimica Acta, 1986, 185: 1-17. |
30 | Sijmen D J. SIMPLS: an alternative approach to partial least squares regression[J]. Chemometrics and Intelligent Laboratory Systems, 1993, 18(3): 251-263. |
[1] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[2] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[3] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[4] | Yuying GUO, Jiaqiang JING, Wanni HUANG, Ping ZHANG, Jie SUN, Yu ZHU, Junxuan FENG, Hongjiang LU. Water-lubricated drag reduction and pressure drop model modification for heavy oil pipeline [J]. CIESC Journal, 2023, 74(7): 2898-2907. |
[5] | Yuan YU, Weiwei CHEN, Junjie FU, Jiaxiang LIU, Zhiwei JIAO. Study and prediction of flow field in the annular region of geometrically similar turbo air classifier [J]. CIESC Journal, 2023, 74(6): 2363-2373. |
[6] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
[7] | Xuejin GAO, Yuzhuo YAO, Huayun HAN, Yongsheng QI. Fault monitoring of fermentation process based on attention dynamic convolutional autoencoder [J]. CIESC Journal, 2023, 74(6): 2503-2521. |
[8] | Yanhui LI, Shaoming DING, Zhouyang BAI, Yinan ZHANG, Zhihong YU, Limei XING, Pengfei GAO, Yongzhen WANG. Corrosion micro-nano scale kinetics model development and application in non-conventional supercritical boilers [J]. CIESC Journal, 2023, 74(6): 2436-2446. |
[9] | Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650. |
[10] | Laiming LUO, Jin ZHANG, Zhibin GUO, Haining WANG, Shanfu LU, Yan XIANG. Simulation and experiment of high temperature polymer electrolyte membrane fuel cells stack in the 1—5 kW range [J]. CIESC Journal, 2023, 74(4): 1724-1734. |
[11] | Xinyuan WU, Qilei LIU, Boyuan CAO, Lei ZHANG, Jian DU. Group2vec: group vector representation and its property prediction applications based on unsupervised machine learning [J]. CIESC Journal, 2023, 74(3): 1187-1194. |
[12] | Jiahui CHEN, Xinze YANG, Guzhong CHEN, Zhen SONG, Zhiwen QI. A critical discussion on developing molecular property prediction models: density of ionic liquids as example [J]. CIESC Journal, 2023, 74(2): 630-641. |
[13] | Kenian SHI, Jingyuan ZHENG, Yu QIAN, Siyu YANG. Two-stage stochastic programming of steam power system based on Markov chain [J]. CIESC Journal, 2023, 74(2): 807-817. |
[14] | Xuejin GAO, Kun CHENG, Huayun HAN, Huihui Gao, Yongsheng QI. Fault diagnosis of chillers using central loss conditional generative adversarial network [J]. CIESC Journal, 2022, 73(9): 3950-3962. |
[15] | Jing YANG, Zhenkang LIN, Jun TANG, Cheng FAN, Kening SUN. A review of fault characteristics, fault diagnosis and identification for lithium-ion battery systems [J]. CIESC Journal, 2022, 73(8): 3394-3405. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||