CIESC Journal ›› 2021, Vol. 72 ›› Issue (2): 761-771.DOI: 10.11949/0438-1157.20201299
• Reviews and monographs • Previous Articles Next Articles
LOU Fengyan1,2,3(),YIN Jiabin2,DUAN Xiaonan2,WANG Qining1,3,AI Ning1,4,ZHANG Jisong2()
Received:
2020-09-10
Revised:
2020-11-15
Online:
2021-02-05
Published:
2021-02-05
Contact:
ZHANG Jisong
娄锋炎1,2,3(),尹佳滨2,段笑南2,王祁宁1,3,艾宁1,4,张吉松2()
通讯作者:
张吉松
作者简介:
娄锋炎(1996—),男,硕士研究生,基金资助:
CLC Number:
LOU Fengyan, YIN Jiabin, DUAN Xiaonan, WANG Qining, AI Ning, ZHANG Jisong. Application of continuous micro-reaction hydrogenation technology in deprotection reaction[J]. CIESC Journal, 2021, 72(2): 761-771.
娄锋炎, 尹佳滨, 段笑南, 王祁宁, 艾宁, 张吉松. 连续微反应加氢技术在脱保护反应中的应用[J]. 化工学报, 2021, 72(2): 761-771.
Add to citation manager EndNote|Ris|BibTeX
1 | Blaser H U, Indolese A, Schnyder A, et al. Supported palladium catalysts for fine chemicals synthesis[J]. Journal of Molecular Catalysis A Chemical, 2001, 173(1): 3-18. |
2 | Benson H, Bones K, Churchill G, et al. Development of the convergent, kilogram-scale synthesis of an antibacterial clinical candidate using enantioselective hydrogenation[J]. Organic Process Research & Development, 2020, 24(4): 588-598. |
3 | 王灵果, 宋瑛. 活性炭负载Pd(OH)2催化剂的制备及其在笼形叔胺脱N-苄基上的应用[J]. 河北工业大学学报, 2005, 34(3): 85-88. |
Wang L G, Song Y. Preparation of the active carbon supported palladium catalysts and their application for debenzylation of the caged tertiary amine[J]. Journal of Hebei University of Technology, 2005, 34(3): 85-88. | |
4 | Sowa Jr J. Catalysis of Organic Reactions[M]. California: Taylor & Francis Group, 2005: 510. |
5 | Gowda D C, Abiraj K. Heterogeneous catalytic transfer hydrogenation in peptide synthesis[J]. Letters in Peptide Science, 2002, 9(4/5): 153-165. |
6 | Solodenko W, Wen H, Leue S, et al. Development of a continuous-flow system for catalysis with palladium(0) particles[J]. European Journal of Organic Chemistry, 2004, 2004(17): 3601-3610. |
7 | Daga M C, Taddei M, Varchi G. Rapid microwave-assisted deprotection of N-Cbz and N-Bn derivatives[J]. Tetrahedron Letters, 2001, 42(31): 5191-5194. |
8 | Mai A H, Borggraeve W M D. Synthesis of N-hydroxypyrazin-2(1H)-ones via selective O-debenzylation of 1-benzyloxypyrazin-2(1H)-ones using flow methodology[J]. Journal of Flow Chemistry, 2015, 5(1): 6-10. |
9 | Sultane P R, Mete T B, Bhat R G. A convenient protocol for the deprotection of N-benzyloxycarbonyl (Cbz) and benzyl ester groups[J]. Tetrahedron Letters, 2015, 56(16): 2067-2070. |
10 | Chu L N, Nanduri V B, Patel R N, et al. Enzymes for the removal of N-carbobenzyloxy protecting groups from N-carbobenzyloxy-D- and L-amino acids[J]. Journal of Molecular Catalysis B: Enzymatic, 2013, 85/86: 56-60. |
11 | 周光伟, 张莉珠, 薛亚涵, 等. N-苄基脱除研究进展[J]. 有机化学, 2015, 39(9): 2428-2442. |
Zhou G W, Zhang L Z, Xue Y H, et al. Progress of N-benzyl removal[J]. Chinese Journal of Organic Chemistry, 2015, 66(9): 2428-2442. | |
12 | 张强. Caspase-3/7底物的合成及其相关荧光分子合成新方法的研究[D]. 南京: 南京理工大学, 2013. |
Zhang Q. Preparation of the caspase-3/7 substrate and a new systhesis method of fluorescent molecule used in the substrate[D]. Nanjing: Nanjing University of Science & Technology, 2013. | |
13 | Murata M, Hara T, Mori K, et al. Efficient deprotection of N-benzyloxycarbonyl group from amino acids by hydroxyapatite-bound Pd catalyst in the presence of molecular hydrogen[J]. Tetrahedron Letters, 2003, 44(27): 4981-4984. |
14 | 卢定强, 王维胞, 凌岫泉, 等. 新一代喹诺酮类盐酸莫西沙星的合成及应用研究进展[J]. 现代化工, 2014, 34(2): 33-37. |
Lu D Q, Wang W B, Ling X Q, et al. Progress in synthesis and applications of moxifloxacin hydrochloride[J]. Modern Chemical Industry, 2014, 34(2): 33-37. | |
15 | 喻理德, 徐其雄, 王星. 莫西沙星侧链合成方法改进[J]. 江西师范大学学报(自然科学版), 2017, 41(5): 507-509. |
Yu L D, Xu Q X, Wang X, et al. The improved synthesis of moxifloxacin side chain[J]. Journal of Jiangxi Normal University(Natural Science Edition), 2017, 41(5): 507-509. | |
16 | 陈莉. 催化加氢脱苄基/苄氧羰基的技术研究[D]. 杭州: 浙江工业大学, 2015. |
Chen L. Study on debenzylation/debenzyloxycarbonyl by catalytic hydrogenation methods[D]. Hangzhou: Zhejiang University of Technology, 2015. | |
17 | 刘文涛, 郑德强, 王长斌, 等. 多利培南的合成工艺改进[J]. 食品与药品, 2016, 18(6): 404-406. |
Liu W T, Zheng D Q, Wang C B, et al. Improvement on the synthesis process of doripenem[J]. Food and Drug, 2016, 18(6): 404-406. | |
18 | Hwang H T, Martinelli J R, Gounder R, et al. Kinetic study of Pd-catalyzed hydrogenation of N-benzyl-4-fluoroaniline[J]. Chemical Engineering Journal, 2016, 288: 758-769. |
19 | David A, Vannice M A. Control of catalytic debenzylation and dehalogenation reactions during liquid-phase reduction by H2[J]. Journal of Catalysis, 2006, 237(2): 349-358. |
20 | Felpin F X, Fouquet E. A useful, reliable and safer protocol for hydrogenation and the hydrogenolysis of O-benzyl groups: the in situ preparation of an active Pd(0)/C catalyst with well-defined properties[J]. Chemistry-A European Journal, 2010, 16(41): 12440-11245. |
21 | 高金华. 抗菌新药莫西沙星关键中间体的合成研究[D]. 杭州: 浙江工业大学, 2012. |
Gao J H. Study on synthesis of key intermediate of moxifloxacin[D]. Hangzhou: Zhejiang University of Technology, 2012. | |
22 | Kapur M. Synthetic approaches towards polyhydroxy cyclic amines: potent glycosidase inhibitors[D]. Pune: University of Pune, 2002. |
23 | Yue J. Multiphase flow processing in microreactors combined with heterogeneous catalysis for efficient and sustainable chemical synthesis[J]. Catalysis Today, 2018, 308(15): 3-19. |
24 | 屠佳成, 桑乐, 艾宁, 等. 连续微反应加氢技术在有机合成中的研究进展[J]. 化工学报, 2019, 70(10): 3859-3868. |
Tu J C, Sang L, Ai N, et al. Research process of continuous hydrogenation in organic synthesis[J]. CIESC Journal, 2019, 70(10): 3859-3868. | |
25 | Dormán G, Kocsis L, Jones R, et al. A benchtop continuous flow reactor: a solution to the hazards posed by gas cylinder based hydrogenation[J]. Journal of Chemical Health & Safety, 2013, 20(4): 3-8. |
26 | Irfan M, Glasnov T N, Kappe C O. Heterogeneous catalytic hydrogenation reactions in continuous‐flow reactors[J]. ChemSusChem, 2011, 4(3): 300-316. |
27 | Cossar P J, Hizartzidis L, Simone M I, et al. The expanding utility of continuous flow hydrogenation[J]. Organic & Biomolecular Chemistry, 2015, 13(26): 7119-7130. |
28 | 黄建珍. 填充床振荡流反应器中氨曲南主环合成过程[D]. 杭州: 浙江大学, 2014. |
Huang J Z. Synthesis process of 1-azetidinesulfonicacid in a packed-bed oscillatory flow reactor [D]. Hangzhou: Zhejiang University, 2014. | |
29 | Ekholm F S, Mándity I M, Fülöp F, et al. Rapid, simple, and efficient deprotection of benzyl/benzylidene protected carbohydrates by utilization of flow chemistry[J]. Tetrahedron Letters, 2011, 52(16): 1839-1841. |
30 | Zarandi M, Bayat Y, Zebardasti A, et al. Statistical optimization of a novel approach for the reductive debenzylation of 2,4,6,8,10,12-hexabenzyl-2,4,6,8,10,12-hexaazaisowurtzitane using Pd@SiO2 nano catalyst[J]. Central European Journal of Energetic Materials, 2017, 14(4): 984-995. |
31 | Matsunaga Y, Yamada H, Tagawa T. Comparison between upflow reactor and trickle-bed reactor in gas-liquid-liquid-solid four-phase reaction[J]. Journal of Chemical Engineering of Japan, 2009, 42(): 125-129. |
32 | Fotouhi-Far F, Bashiri H, Hamadanian M, et al. Increment of activity of Pd(OH)2/C catalyst in order to improve the yield of high performance 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (HNIW)[J]. Inorganic and Nano-Metal Chemistry, 2017, 47(11): 1489-1494. |
33 | Tu J C, Sang L, Cheng H, et al. Continuous hydrogenolysis of N-diphenylmethyl groups in a micropacked-bed reactor[J]. Organic Process Research & Development, 2020, 24(1): 59-66. |
34 | Perosa A, Tundo P, Zinovyev S. Mild catalytic multiphase hydrogenolysis of benzyl ethers[J]. Green Chemistry, 2002, 4(5): 492-494. |
35 | Oyamada H, Naito T, Kobayashi S. Continuous flow hydrogenation using polysilane-supported palladium/alumina hybrid catalysts[J]. Beilstein Journal of Organic Chemistry, 2011, 7(1): 735-739. |
36 | Dong K, Chen Y, Zhang Y Y, et al. The highly effective hydrogenolysis-based debenzylation of tetraacetyl-dibenzyl-hexaazaisowurtzitane (TADBIW) using a palladium/DOWEX catalyst having a synergistic effect[J]. Journal of Energetic Materials, 2017, 35(4): 421-429. |
37 | Lou D, Wang H, Liu S, et al. PdFe bimetallic catalysts for debenzylation of hexabenzylhexaazaisowurtzitane (HBIW) and tetraacetyldibenzylhexaazaisowurtzitane (TADBIW)[J]. Catalysis Communications, 2018, 109: 28-32. |
38 | Hasegawa K, Sakurai T. Hydrogenolysis catalyst: US20020169074[P]. 2002-11-09. |
39 | Mead K, Brewer B. Strategies in spiroketal synthesis revisited: Recent applications and advances[J]. Current Organic Chemistry, 2003, 7(3): 227-256. |
40 | Pandarus V, Béland F, Ciriminna R, et al. Selective debenzylation of benzyl protected groups with SiliaCat Pd(0) under mild conditions[J]. ChemCatChem, 2011, 3(7): 1146-1150. |
41 | Llàcer E, Romea P, Urpí F. Studies on the hydrogenolysis of benzyl ethers[J]. Tetrahedron Letters, 2006, 47(32): 5815-5818. |
42 | 戴云生, 董守安, 潘再富, 等. 催化氢解脱苄基Pd/C催化剂的研究和应用[J]. 工业催化, 2011, 19(4): 7-10. |
Dai Y S, Dong S A, Pan Z F, et al. Research on and application of Pd/C catalysts for catalytic hydrogenolysis debenzylation[J]. Industrial Catalysis, 2011, 19(4): 7-10. | |
43 | 郑纯智, 张继炎, 王日杰. 催化转移加氢及其在有机合成中的应用[J]. 工业催化, 2004, 12(3): 29-35. |
Zheng C Z, Zhang J Y, Wuang R J. Catalytic transfer hydrogenation and its application in organic synthesis [J]. Industrial Catalysis, 2004, 12(3): 29-35. | |
44 | 李岳锋, 张之翔, 田勤奋, 等. 美罗培南合成用钯炭催化剂的制备及性能[J]. 工业催化, 2015, 23(6): 464-468. |
Li Y F, Zhang Z X, Tian Q F, et al. Preparation and performance of palladium carbon catalysts for meropenem synthesis[J]. Industrial Catalysis, 2015, 23(6): 464-468. | |
45 | Ji H, Jing Q, Huang J, et al. Acid-facilitated debenzylation of N-Boc, N-benzyl double protected 2-aminopyridinomethyl pyrrolidine derivatives[J]. Tetrahedron, 2012, 68(5): 1359-1366. |
46 | Bernotas R C, Cube R V. The use of Pearlman's catalyst for selective N-debenzylation in the presence of benzyl Ethers[J]. Synthetic Communications, 1990, 20(8): 1209-1212. |
47 | Li Y, Manickam G, Ghoshal A, et al. More efficient palladium catalyst for hydrogenolysis of benzyl groups[J]. Synthetic Communications, 2006, 36(7): 925-928. |
48 | Koskin A P, Simakova I L, Parmon V N. Study of palladium catalyst deactivation in synthesis of 4,10-diformyl-2,6,8,12-tetraacetyl-2,4,6,8,10,12-hexaazaisowurtzitane[J]. Reaction Kinetics and Catalysis Letters, 2007, 92(2): 293-302. |
49 | Fotouhi‐Far F, Bashiri H, Hamadanian M. Study of deactivation of Pd(OH)2/C catalyst in reductive debenzylation of hexabenzylhexaazaisowurtzitane[J]. Propellants, Explosives, Pyrotechnics, 2017, 42(2): 213-219. |
50 | Maksimowski P, Gołofit T, Tomaszewski W. Palladium catalyst in the HBIW hydrodebenzylation reaction. Deactivation and spent catalyst regeneration procedure[J]. Central European Journal of Energetic Materials, 2016, 13(2): 333-348. |
51 | Fajt V, Kurc L, Červený L. The effect of solvents on the rate of catalytic hydrogenation of 6-ethyl-1,2,3,4-tetrahydroanthracene-9,10-dione[J]. International Journal of Chemical Kinetics, 2008, 40(5): 240-252. |
52 | Buncel E, Kesmarky S, Symons E A. The inherent instability of dimethylformamide-water systems containing hydroxide ion: further observations[J]. Journal of the Chemical Society D Chemical Communications, 1971, (2): 120. |
53 | Chen B, Dingerdissen U, Krauter J G E, et al. New developments in hydrogenation catalysis particularly in synthesis of fine and intermediate chemicals[J]. Applied Catalysis A: General, 2005, 280(1): 17-46. |
54 | Roughley S D, Jordan A M. The medicinal chemist's toolbox: an analysis of reactions used in the pursuit of drug candidates[J]. Journal of Medicinal Chemistry, 2011, 54(10): 3451-3479. |
55 | Gaunt M J, Yu J, Spencer J B. Rational design of benzyl-type protecting groups allows sequential deprotection of hydroxyl groups by catalytic hydrogenolysis[J]. The Journal of Organic Chemistry, 1998, 63(13): 4172-4173. |
56 | Sartori G, Ballini R, Bigi F, et al. Protection (and deprotection) of functional groups in organic synthesis by heterogeneous catalysis[J]. Chemical Reviews, 2004, 104(1): 199-250. |
57 | Sajiki H, Hirota K. A novel type of PdMC‐catalyzed hydrogenation using a catalyst poison: chemoselective inhibition of the hydrogenolysis for O‐benzyl protective group by the addition of a nitrogen‐containing base[J]. Tetrahedron, 1998, 54(46): 13981-13996. |
58 | Sajiki H, Hirota K. Pd/C-catalyzed chemoselective hydrogenation in the presence of a phenolic MPM protective group using pyridine as a catalyst poison[J]. Chemical & Pharmaceutical Bulletin, 2003, 51(3): 320-324. |
59 | Yin J, Weisel M, Ji Y, et al. Improved preparation of a key hydroxylamine intermediate for relebactam: rate enhancement of benzyl ether hydrogenolysis with DABCO[J]. Organic Process Research & Development, 2018, 22(3): 273-277. |
60 | Crawford C, Oscarson S. Optimized conditions for the palladium-catalyzed hydrogenolysis of benzyl and naphthylmethyl ethers: preventing saturation of aromatic protecting groups[J]. European Journal of Organic Chemistry, 2020, 2020(22): 3332-3337. |
61 | Ochocinska A, Siegbahn A, Ellervik U. HCl/DMF for enhanced chemoselectivity in catalytic hydrogenolysis reactions[J]. Tetrahedron Letters, 2010, 51(39): 5200-5202. |
62 | Knudsen K R, Holden J, Ley S V, et al. Optimisation of conditions for O-benzyl and N-benzyloxycarbonyl protecting group removal using an automated flow hydrogenator[J]. Advanced Synthesis & Catalysis, 2007, 349(4/5): 535-538. |
63 | Desai B, Kappe C O. Heterogeneous hydrogenation reactions using a continuous flow high pressure device[J]. Journal of Combinatorial Chemistry, 2005, 7(5): 641-643. |
64 | Zhang L, Xiao Q, Ma C, et al. Construction of a bicyclic beta-benzyloxy and beta-hydroxy amide library through a multicomponent cyclization reaction[J]. Journal of Combinatorial Chemistry, 2009, 11(4): 640-644. |
65 | 刘巧珍, 江富祥, 王果, 等. Pd/C催化氢化高效脱除含氮糖中的苄基型保护基[J]. 暨南大学学报(自然科学版), 2013, 34(3): 319-323. |
Liu Q Z, Jiang F X, Wang G, et al. High-efficay removal of benzyl-type protective groups in azasugar applying Pd/C catalytic hydrogenation[J]. Journal of Jinan University(Natural Science & Medicine Edition), 2013, 34(3): 319-323. | |
66 | 邱文革, 于永忠. N-苄基的脱去[J]. 合成化学, 1998, 6(1): 34-39. |
Qiu W G, Yu Y Z. N-Debenzylation[J]. Chinese Journal of Synthetic Chemistry, 1998, 6(1): 34-39. | |
67 | Bissette A J, Fletcher S P. Comprehensive Organic Synthesis Ⅱ[M]. Oxford: University of Oxford, 2014: 1164-1184. |
68 | Kovács E, Thurner A, Farkas F, et al. Hydrogenolysis of N-protected aminooxetanes over palladium: an efficient method for a one-step ring opening and debenzylation reaction[J]. Journal of Molecular Catalysis A: Chemical, 2011, 339(1/2): 32-36. |
69 | Tanielyan S K, Alvez G, Marin N, et al. An unexpected pressure effect in the catalytic hydrogenolysis of a complex benzyl amine[J]. Topics in Catalysis, 2014, 57(17/18/19/20): 1359-1365. |
70 | Jones R V, Godorhazy L, Varga N, et al. Continuous-flow high pressure hydrogenation reactor for optimization and high-throughput synthesis[J]. Journal of Combinatorial Chemistry, 2006, 8(1): 110-116. |
71 | Darvas F, Godorhazy L, Karancsi T, et al. Laboratory scale continuous flow hydrogenation process: US7988919[P]. 2011-08-02. |
72 | Baxendale I R, Hornung C, Ley S V, et al. Flow microwave technology and microreactors in synthesis[J]. Australian Journal of Chemistry, 2013, 66(2): 131-144. |
73 | Müslehiddinoğlu J, Lobben P, Leung S, et al. A kinetic investigation into the removal of carbobenzyloxy group from protected amines via hydrogenolysis reaction[J]. Catalysis Today, 2007, 123(1/2/3/4): 164-170. |
74 | Papageorgiou E A, Gaunt M J, Yu J Q, et al. Selective hydrogenolysis of novel benzyl carbamate protecting groups[J]. Organic Letters, 2000, 2(8): 1049-1051. |
75 | Kobayashi J, Mori Y, Okamoto K, et al. A microfluidic device for conducting gas-liquid-solid hydrogenation reactions[J]. Science, 2004, 304(5675): 1305-1308. |
76 | Akiyama R, Kobayashi S. The polymer incarcerated method for the preparation of highly active heterogeneous palladium catalysts[J]. Journal of the American Chemical Society, 2003, 125(12): 3412-3413. |
77 | Kobayashi S, Mori Y, Kitamori T, et al. Method of catalytic reaction using micro-reactor: US7663008[P]. 2010-02-16. |
78 | Knudsen K R, Ladlow M, Bandpey Z, et al. Fully automated sequence-specific synthesis of α-peptides using flow chemistry[J]. Journal of Flow Chemistry, 2014, 4(1): 18-21. |
79 | Clapham B, Wilson N S, Michmerhuizen M J, et al. Construction and validation of an automated flow hydrogenation instrument for application in high-throughput organic chemistry[J]. Journal of Combinatorial Chemistry, 2008, 10(1): 88-93. |
[1] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[2] | Feng ZHU, Kailin CHEN, Xiaofeng HUANG, Yinzhu BAO, Wenbin LI, Jiaxin LIU, Weiqiang WU, Wangwei GAO. Performance study of KOH modified carbide slag for removal of carbonyl sulfide [J]. CIESC Journal, 2023, 74(6): 2668-2679. |
[3] | Xiqing ZHANG, Yanting WANG, Yanhong XU, Shuling CHANG, Tingting SUN, Ding XUE, Lihong ZHANG. Effect of Mg content on isobutane dehydrogenation properties over nanosheets supported Pt-In catalysts [J]. CIESC Journal, 2023, 74(6): 2427-2435. |
[4] | Jianghuai ZHANG, Zhong ZHAO. Robust minimum covariance constrained control for C3 hydrogenation process and application [J]. CIESC Journal, 2023, 74(3): 1216-1227. |
[5] | Xingyu YANG, You MA, Chunying ZHU, Taotao FU, Youguang MA. Study on liquid-liquid distribution in comb parallel microchannels [J]. CIESC Journal, 2023, 74(2): 698-706. |
[6] | Chenghao ZHANG, Jing LUO, Jisong ZHANG. Advances in continuous aerobic oxidation based on nitroxyl radical catalyst in microreactors [J]. CIESC Journal, 2023, 74(2): 511-524. |
[7] | Yu XIE, Min ZHANG, Weiguo HU, Yujun WANG, Guangsheng LUO. Study on efficient dissolution of D-7-ACA using membrane dispersion microreactor [J]. CIESC Journal, 2023, 74(2): 748-755. |
[8] | Mengxin LIANG, Yan GUO, Shidong WANG, Hongwei ZHANG, Pei YUAN, Xiaojun BAO. Study on preparation of Pd catalyst supported on carbon nitride for the selective hydrogenation of SBS [J]. CIESC Journal, 2023, 74(2): 766-775. |
[9] | Jiawei FU, Shuaishuai CHEN, Kailun FANG, Xin JIANG. Advantage of microreactor on the synthesis of high-activity Cu-Mn catalyst by co-precipitation [J]. CIESC Journal, 2023, 74(2): 776-783. |
[10] | Yu CHEN, Xiaoyan ZHENG, Hui ZHAO, Erqiang WANG, Jie LI, Chunshan LI. Heterogeneous aldol condensation catalyzed with Pickering emulsion [J]. CIESC Journal, 2023, 74(1): 449-458. |
[11] | Kuan HUANG, Yongde MA, Zhenping CAI, Yanning CAO, Lilong JIANG. Research progress in catalytic hydroconversion of lipid to second-generation biodiesel [J]. CIESC Journal, 2023, 74(1): 380-396. |
[12] | Jiachen SUN, Chunlei PEI, Sai CHEN, Zhijian ZHAO, Shengbao HE, Jinlong GONG. Advances in chemical-looping oxidative dehydrogenation of light alkanes [J]. CIESC Journal, 2023, 74(1): 205-223. |
[13] | Chenyang SHEN, Kaihang SUN, Yueping ZHANG, Changjun LIU. Research progresses on In2O3 and In2O3 supported metal catalysts for CO2 hydrogenation to methanol [J]. CIESC Journal, 2023, 74(1): 145-156. |
[14] | Huan ZHOU, Mengli ZHANG, Qing HAO, Si WU, Jie LI, Cunbing XU. Process mechanism and dynamic behaviors of magnesium sulfate type carnallite converting into kainite [J]. CIESC Journal, 2022, 73(9): 3841-3850. |
[15] | Jingwei ZHANG, Yiwei ZHOU, Zhuo CHEN, Jianhong XU. Advances in frontiers of organic synthesis in microreactor [J]. CIESC Journal, 2022, 73(8): 3472-3482. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||