CIESC Journal ›› 2023, Vol. 74 ›› Issue (8): 3366-3374.DOI: 10.11949/0438-1157.20230442
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Feifei YANG1(), Shixi ZHAO2, Wei ZHOU1(
), Zhonghai NI1(
)
Received:
2023-05-05
Revised:
2023-08-18
Online:
2023-10-18
Published:
2023-08-25
Contact:
Wei ZHOU, Zhonghai NI
通讯作者:
周维,倪中海
作者简介:
杨菲菲(1991—),女,博士,副教授,feiyang@cumt.edu.cn
基金资助:
CLC Number:
Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol[J]. CIESC Journal, 2023, 74(8): 3366-3374.
杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374.
Fig.9 The effect of Sn content on CO2 conversion, product selectivity and the space time yield (STY) of methanol (reaction conditions: T=300℃, P=3 MPa, GHSV=15000 ml·g-1·h-1, TOS=1 h)
Catalyst | Reaction condition | GHSV/ (ml·g-1·h-1) | CO2 conversion/% | SMethanol/% | STY/ (mmol·g-1·h-1) | Ref. | |
---|---|---|---|---|---|---|---|
T/℃ | P /MPa | ||||||
In2O3 | 300 | 3 | 15000 | 5.9 | 55.4 | 5.0 | this work |
0.5Sn-In2O3 | 300 | 3 | 15000 | 6.2 | 70.4 | 6.9 | this work |
2Sn-In2O3 | 300 | 3 | 15000 | 4.5 | 80.8 | 5.6 | this work |
In2O3 | 300 | 4 | 24000 | ~5 | ~60 | 7.4 | [ |
Pt-In2O3 | 300 | 4 | 24000 | ~9 | ~67 | 14.8 | [ |
In2O3 | 300 | 5 | 21000 | 8 | 71 | 10 | [ |
Ir-In2O3 | 300 | 5 | 21000 | 17.7 | 70 | 24.1 | [ |
Pd-In2O3 | 300 | 5 | 21000 | 21 | 71 | 27.8 | [ |
Au-In2O3 | 300 | 5 | 21000 | 11.7 | 67.8 | 14.7 | [ |
In2O3 | 300 | 5 | 21000 | 9 | 61 | 10.3 | [ |
Pt/In2O3 | 300 | 5 | 21000 | 17.5 | 53 | 16.6 | [ |
Table 1 Comparison of Sn-In2O3 with the reported In2O3 based catalysts for CO2 hydrogenation to methanol
Catalyst | Reaction condition | GHSV/ (ml·g-1·h-1) | CO2 conversion/% | SMethanol/% | STY/ (mmol·g-1·h-1) | Ref. | |
---|---|---|---|---|---|---|---|
T/℃ | P /MPa | ||||||
In2O3 | 300 | 3 | 15000 | 5.9 | 55.4 | 5.0 | this work |
0.5Sn-In2O3 | 300 | 3 | 15000 | 6.2 | 70.4 | 6.9 | this work |
2Sn-In2O3 | 300 | 3 | 15000 | 4.5 | 80.8 | 5.6 | this work |
In2O3 | 300 | 4 | 24000 | ~5 | ~60 | 7.4 | [ |
Pt-In2O3 | 300 | 4 | 24000 | ~9 | ~67 | 14.8 | [ |
In2O3 | 300 | 5 | 21000 | 8 | 71 | 10 | [ |
Ir-In2O3 | 300 | 5 | 21000 | 17.7 | 70 | 24.1 | [ |
Pd-In2O3 | 300 | 5 | 21000 | 21 | 71 | 27.8 | [ |
Au-In2O3 | 300 | 5 | 21000 | 11.7 | 67.8 | 14.7 | [ |
In2O3 | 300 | 5 | 21000 | 9 | 61 | 10.3 | [ |
Pt/In2O3 | 300 | 5 | 21000 | 17.5 | 53 | 16.6 | [ |
1 | Holdren J P. Science and technology for sustainable well-being[J]. Science, 2008, 319(5862): 424-434. |
2 | Wang W, Wang S P, Ma X B, et al. Recent advances in catalytic hydrogenation of carbon dioxide[J]. Chemical Society Reviews, 2011, 40(7): 3703-3727. |
3 | 巩金龙. CO2化学转化研究进展概述[J]. 化工学报, 2017, 68(4): 1282-1285. |
Gong J L. A brief overview on recent progress on chemical conversion of CO2 [J]. CIESC Journal, 2017, 68(4): 1282-1285. | |
4 | Olah G A. Beyond oil and gas: the methanol economy[J]. Angewandte Chemie International Edition, 2005, 44(18): 2636-2639. |
5 | Jiang X, Nie X W, Guo X W, et al. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis[J]. Chemical Reviews, 2020, 120(15): 7984-8034. |
6 | Zhong J W, Yang X F, Wu Z L, et al. State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol[J]. Chemical Society Reviews, 2020, 49(5): 1385-1413. |
7 | 王莉, 姜枫, 胥月兵, 等. Ga助剂对Cu@ZnO催化CO2加氢制甲醇性能的影响[J]. 化工时刊, 2021, 35(5): 1-4. |
Wang L, Jiang F, Xu Y B, et al. Effect of Ga promoter on performance of Cu@ZnO catalyst for CO2 hydrogenation to methanol[J]. Chemical Industry Times, 2021, 35(5): 1-4. | |
8 | Ye J Y, Liu C J, Mei D H, et al. Active oxygen vacancy site for methanol synthesis from CO2 hydrogenation on In2O3(110): a DFT study[J]. ACS Catalysis, 2013, 3(6): 1296-1306. |
9 | Martin O, Martín A J, Mondelli C, et al. Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation[J]. Angewandte Chemie International Edition, 2016, 55(21): 6261-6265. |
10 | 沈辰阳, 孙楷航, 张月萍, 等. 二氧化碳加氢合成甲醇氧化铟及其负载金属催化剂研究进展[J]. 化工学报, 2023, 74(1): 145-156. |
Shen C Y, Sun K H, Zhang Y P, et al. Research progresses on In2O3 and In2O3 supported metal catalysts for CO2 hydrogenation to methanol[J]. CIESC Journal, 2023, 74(1): 145-156. | |
11 | 焦春学, 慕红梅, 高鹏, 等. In2O3基催化剂在热催化二氧化碳加氢反应中的研究进展[J]. 燃料化学学报, DOI: 10.19906/j.cnki.JFCT.2022086 . |
Jiao C X, Mu H M, Gao P, et al. Progress of In2O3-based catalysts in thermal catalytic CO2 hydrogenation reaction[J]. Journal of Fuel Chemistry and Technology, DOI: 10.19906/j.cnki.JFCT.2022086 . | |
12 | Pinheiro Araújo T, Mondelli C, Agrachev M, et al. Flame-made ternary Pd-In2O3-ZrO2 catalyst with enhanced oxygen vacancy generation for CO2 hydrogenation to methanol[J]. Nature Communications, 2022, 13(1): 1-12. |
13 | Jamalpoor N, Ghasemi M, Soleimanian V. Investigation of the role of deposition rate on optical, microstructure and ethanol sensing characteristics of nanostructured Sn doped In2O3 films[J]. Materials Research Bulletin, 2018, 106: 49-56. |
14 | Ri J S, Li X W, Shao C L, et al. Sn-doping induced oxygen vacancies on the surface of the In2O3 nanofibers and their promoting effect on sensitive NO2 detection at low temperature[J]. Sensors and Actuators B: Chemical, 2020, 317: 128194. |
15 | Ye X, Yang C Y, Pan X L, et al. Highly selective hydrogenation of CO2 to ethanol via designed bifunctional Ir1-In2O3 single-atom catalyst[J]. Journal of the American Chemical Society, 2020, 142(45): 19001-19005. |
16 | Finetti M, Ottavianelli E E, Pis Diez R, et al. A density functional study of the Ni5Sn and Ni6Sn clusters[J]. Journal of Molecular Structure: THEOCHEM, 2003, 634(1/2/3): 171-179. |
17 | Tian H, Li X Y, Chen S, et al. Role of Sn in Ni-Sn/CeO2 catalysts for ethanol steam reforming[J]. Chinese Journal of Chemistry, 2017, 35(5): 651-658. |
18 | Gan J Y, Lu X H, Wu J H, et al. Oxygen vacancies promoting photoelectrochemical performance of In2O3 nanocubes[J]. Scientific Reports, 2013, 3(1): 1-7. |
19 | Wang L, Ghoussoub M, Wang H, et al. Photocatalytic hydrogenation of carbon dioxide with high selectivity to methanol at atmospheric pressure[J]. Joule, 2018, 2(7): 1369-1381. |
20 | Shen C Y, Sun K H, Zhang Z T, et al. Highly active Ir/In2O3 catalysts for selective hydrogenation of CO2 to methanol: experimental and theoretical studies[J]. ACS Catalysis, 2021, 11(7): 4036-4046. |
21 | Frei M S, Mondelli C, García-Muelas R, et al. Atomic-scale engineering of indium oxide promotion by palladium for methanol production via CO2 hydrogenation[J]. Nature Communications, 2019, 10(1): 1-11. |
22 | Rui N, Wang Z Y, Sun K H, et al. CO2 hydrogenation to methanol over Pd/In2O3: effects of Pd and oxygen vacancy[J]. Applied Catalysis B: Environmental, 2017, 218: 488-497. |
23 | 戴文华, 辛忠. Si掺杂对Cu/ZrO2催化CO2加氢制甲醇性能的影响[J]. 化工学报, 2022, 73(8): 3586-3596. |
Dai W H, Xin Z. Effect of Si-doped Cu/ZrO2 on the performance of catalysts for CO2 hydrogenation to methanol[J]. CIESC Journal, 2022, 73(8): 3586-3596. | |
24 | Dang S S, Qin B, Yang Y, et al. Rationally designed indium oxide catalysts for CO2 hydrogenation to methanol with high activity and selectivity[J]. Science Advances, 2020, 6(25): eaaz2060. |
25 | Han Z, Tang C Z, Wang J J, et al. Atomically dispersed Pt n + species as highly active sites in Pt/In2O3 catalysts for methanol synthesis from CO2 hydrogenation[J]. Journal of Catalysis, 2021, 394: 236-244. |
26 | Rui N, Zhang F, Sun K H, et al. Hydrogenation of CO2 to methanol on a Au δ +-In2O3– x catalyst[J]. ACS Catalysis, 2020, 10(19): 11307-11317. |
27 | Sun K H, Rui N, Zhang Z T, et al. A highly active Pt/In2O3 catalyst for CO2 hydrogenation to methanol with enhanced stability[J]. Green Chemistry, 2020, 22(15): 5059-5066. |
28 | Frei M S, Capdevila-Cortada M, García-Muelas R, et al. Mechanism and microkinetics of methanol synthesis via CO2 hydrogenation on indium oxide[J]. Journal of Catalysis, 2018, 361: 313-321. |
29 | Tsoukalou A, Abdala P M, Stoian D, et al. Structural evolution and dynamics of an In2O3 catalyst for CO2 hydrogenation to methanol: an operando XAS-XRD and in situ TEM study[J]. Journal of the American Chemical Society, 2019, 141(34): 13497-13505. |
30 | Cao A, Wang Z B, Li H, et al. Relations between surface oxygen vacancies and activity of methanol formation from CO2 hydrogenation over In2O3 surfaces[J]. ACS Catalysis, 2021, 11(3): 1780-1786. |
31 | Guharoy U, Le Saché E, Cai Q, et al. Understanding the role of Ni-Sn interaction to design highly effective CO2 conversion catalysts for dry reforming of methane[J]. Journal of CO2 Utilization, 2018, 27: 1-10. |
[1] | Baomin DAI, Qilong WANG, Shengchun LIU, Jianing ZHANG, Xinhai LI, Fandi ZONG. Thermodynamic performance analysis of combined cooling and heating system based on combination of CO2 with the zeotropic refrigerant assisted subcooled [J]. CIESC Journal, 2023, 74(S1): 64-73. |
[2] | Tianyang YANG, Huiming ZOU, Hui ZHOU, Chunlei WANG, Changqing TIAN. Experimental investigation on heating performance of vapor-injection CO2 heat pump for electric vehicles at -30℃ [J]. CIESC Journal, 2023, 74(S1): 272-279. |
[3] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[4] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[5] | Meisi CHEN, Weida CHEN, Xinyao LI, Shangyu LI, Youting WU, Feng ZHANG, Zhibing ZHANG. Advances in silicon-based ionic liquid microparticle enhanced gas capture and conversion [J]. CIESC Journal, 2023, 74(9): 3628-3639. |
[6] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[7] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[8] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[9] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[10] | Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC [J]. CIESC Journal, 2023, 74(7): 2999-3009. |
[11] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[12] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[13] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[14] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[15] | Chen WANG, Xiufeng SHI, Xianfeng WU, Fangjia WEI, Haohong ZHANG, Yin CHE, Xu WU. Preparation of Mn3O4 catalyst by redox method and study on its catalytic oxidation performance and mechanism of toluene [J]. CIESC Journal, 2023, 74(6): 2447-2457. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 687
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 353
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||