CIESC Journal ›› 2021, Vol. 72 ›› Issue (5): 2878-2886.DOI: 10.11949/0438-1157.20201426
• Process safety • Previous Articles Next Articles
NIE Xuan(),ZHOU Kuibin(
),WU Yueqiong,HUANG Mengyuan,JIANG Juncheng
Received:
2020-10-12
Revised:
2020-12-22
Online:
2021-05-05
Published:
2021-05-05
Contact:
ZHOU Kuibin
通讯作者:
周魁斌
作者简介:
聂璇(1995—),女,硕士研究生,基金资助:
CLC Number:
NIE Xuan, ZHOU Kuibin, WU Yueqiong, HUANG Mengyuan, JIANG Juncheng. Study on the flame shape of gas-solid jet diffusion[J]. CIESC Journal, 2021, 72(5): 2878-2886.
聂璇, 周魁斌, 吴月琼, 黄梦源, 蒋军成. 气固射流扩散火焰形态研究[J]. 化工学报, 2021, 72(5): 2878-2886.
Frf | H/m | h/m | |||
---|---|---|---|---|---|
0 | 0.12~0.40 | 0 | 0.014~0.045 | 0.45~0.80 | 0 |
147 | 0.12~0.40 | 0.11~4.63 | 0.014~0.053 | 0.41~1.13 | 0~0.33 |
178 | 0.12~0.40 | 0.0~5.51 | 0.014~0.050 | 0.44~1.05 | 0~0.25 |
Table 1 Test conditions and experimental data summary
Frf | H/m | h/m | |||
---|---|---|---|---|---|
0 | 0.12~0.40 | 0 | 0.014~0.045 | 0.45~0.80 | 0 |
147 | 0.12~0.40 | 0.11~4.63 | 0.014~0.053 | 0.41~1.13 | 0~0.33 |
178 | 0.12~0.40 | 0.0~5.51 | 0.014~0.050 | 0.44~1.05 | 0~0.25 |
物质 | 298 K下生成焓 | 比定压热容cp/(kJ/(kg·K)) |
---|---|---|
CH4 | -103847 | — |
CO2 | -393546 | 56.21 |
H2O | -241845 | 43.87 |
N2 | 0 | 33.71 |
O2 | 0 | — |
Table 2 Characteristics of mixture[26]
物质 | 298 K下生成焓 | 比定压热容cp/(kJ/(kg·K)) |
---|---|---|
CH4 | -103847 | — |
CO2 | -393546 | 56.21 |
H2O | -241845 | 43.87 |
N2 | 0 | 33.71 |
O2 | 0 | — |
状况 | Tu/K | Tad,g/K | SL/SL,A |
---|---|---|---|
A | 300 | 2267 | 1 |
B | 300 | 2100 | 0.69 |
C | 300 | 2000 | 0.54 |
D | 300 | 1900 | 0.41 |
E | 300 | 1800 | 0.31 |
F | 300 | 1700 | 0.22 |
Table 3 The influence of adiabatic flame temperature on laminar flame velocity calculated by Eq. (7)
状况 | Tu/K | Tad,g/K | SL/SL,A |
---|---|---|---|
A | 300 | 2267 | 1 |
B | 300 | 2100 | 0.69 |
C | 300 | 2000 | 0.54 |
D | 300 | 1900 | 0.41 |
E | 300 | 1800 | 0.31 |
F | 300 | 1700 | 0.22 |
粒径/μm | ms/(g/s) | L/m | ms,f / (g/s) | ue,gs / (m/s) | Tad,gs/K | Frf | |
---|---|---|---|---|---|---|---|
147 | 2.51 | 0.17 | 0.12 | 0.30 | 1.93 | 2061 | 0.033 |
3.32 | 0.31 | 0.20 | 0.66 | 2.46 | 1930 | 0.044 | |
4.09 | 0.42 | 0.32 | 1.31 | 2.87 | 1766 | 0.054 | |
4.63 | 0.49 | 0.34 | 1.57 | 3.09 | 1727 | 0.059 | |
178 | 4.97 | 0.24 | 0.14 | 0.69 | 2.17 | 1967 | 0.039 |
5.51 | 0.29 | 0.16 | 0.90 | 2.38 | 1917 | 0.043 |
Table 4 The calculated physicochemical parameters of gas-solid jet diffusion flame
粒径/μm | ms/(g/s) | L/m | ms,f / (g/s) | ue,gs / (m/s) | Tad,gs/K | Frf | |
---|---|---|---|---|---|---|---|
147 | 2.51 | 0.17 | 0.12 | 0.30 | 1.93 | 2061 | 0.033 |
3.32 | 0.31 | 0.20 | 0.66 | 2.46 | 1930 | 0.044 | |
4.09 | 0.42 | 0.32 | 1.31 | 2.87 | 1766 | 0.054 | |
4.63 | 0.49 | 0.34 | 1.57 | 3.09 | 1727 | 0.059 | |
178 | 4.97 | 0.24 | 0.14 | 0.69 | 2.17 | 1967 | 0.039 |
5.51 | 0.29 | 0.16 | 0.90 | 2.38 | 1917 | 0.043 |
1 | 施彦秋, 李天星. 建设跨国通道保障能源安全[J]. 中国石油企业, 2012, (9): 44-47. |
Shi Y Q, Li T X. Building transnational channels to ensure energy security [J]. China Petroleum Enterprise, 2012, (9): 44-47. | |
2 | Lowesmith B J, Hankinson G. Large scale high pressure jet fires involving natural gas and natural gas/hydrogen mixtures[J]. Process Safety and Environmental Protection, 2012, 90(2): 108-120. |
3 | Lowesmith B J, Hankinson G. Large scale experiments to study fires following the rupture of high pressure pipelines conveying natural gas and natural gas/hydrogen mixtures[J]. Process Safety and Environmental Protection, 2013, 91(1/2): 101-111. |
4 | Wang Q, Hu L H, Zhang M, et al. Lift-off of jet diffusion flame in sub-atmospheric pressures: an experimental investigation and interpretation based on laminar flame speed[J]. Combustion and Flame, 2014, 161(4): 1125-1130. |
5 | Zhou K B, Qin X L, Zhang L, et al. An experimental study of jet fires in rotating flow fields[J]. Combustion and Flame, 2019, 210: 193-203. |
6 | Zhou K B, Wang Y Z, Zhang L, et al. Effect of nozzle exit shape on the geometrical features of horizontal turbulent jet flame[J]. Fuel, 2020, 260: 116356. |
7 | Liu C C, Huang L Y, Deng T D, et al. On the influence of nozzle geometry on jet diffusion flames under cross-wind[J]. Fuel, 2020, 263: 116549. |
8 | Zhou Z H, Chen G H, Zhou C L, et al. Experimental study on determination of flame height and lift-off distance of rectangular source fuel jet fires[J]. Applied Thermal Engineering, 2019, 152: 430-436. |
9 | Liu C C, Liu X L, Ge H, et al. On the influence of distance between two jets on flickering diffusion flames[J]. Combustion and Flame, 2019, 201: 23-30. |
10 | Ranganathan S, Rockwell S R, Petrow D, et al. Radiative fraction of dust entrained turbulent premixed flames[J]. Journal of Loss Prevention in the Process Industries, 2018, 51: 65-71. |
11 | Christophe P, Rim B M, Mohamed G, et al. Thermal radiation in dust flame propagation[J]. Journal of Loss Prevention in the Process Industries, 2017, 49: 896-904. |
12 | Moghadasi H, Malekian N, Bidabadi M, et al. Analytical modeling of counterflow non-premixed organic particles combustion: Thermal radiation effects[J]. Fuel Processing Technology, 2019, 185: 139-150. |
13 | Vovchuk J I, Poletaev N I. The temperature field of a laminar diffusion dust flame[J]. Combustion and Flame, 1994, 99(3/4): 706-712. |
14 | Demir S, Bychkov V, Chalagalla S H R, et al. Towards a predictive scenario of a burning accident in a mining passage[J]. Combustion Theory and Modelling, 2017, 21(6): 997-1022. |
15 | Xie Y X, Raghavan V, Rangwala A S. Study of interaction of entrained coal dust particles in lean methane-air premixed flames[J]. Combustion and Flame, 2012, 159(7): 2449-2456. |
16 | Rockwell S R, Rangwala A S. Influence of coal dust on premixed turbulent methane-air flames[J]. Combustion and Flame, 2013, 160(3): 635-640. |
17 | Ranganathan S, Lee M, Akkerman V, et al. Suppression of premixed flames with inert particles[J]. Journal of Loss Prevention in the Process Industries, 2015, 35: 46-51. |
18 | Lee M, Ranganathan S, Rangwala A S. Influence of the reactant temperature on particle entrained laminar methane-air premixed flames[J]. Proceedings of the Combustion Institute, 2015, 35(1): 729-736. |
19 | Rockwell S R, Rangwala A S. Modeling of dust air flames[J]. Fire Safety Journal, 2013, 59: 22-29. |
20 | Bidabadi M, Bozorg M V, Bordbar V, et al. Flame propagation through heterogeneous combustion of hybrid aluminum-boron poly-disperse particle suspensions in air[J]. Fuel, 2018, 215: 714-725. |
21 | Seshadri K, Berlad A L, Tangirala V. The structure of premixed particle-cloud flames[J]. Combustion and Flame, 1992, 89(3/4): 333-342. |
22 | Liu Y, Sun J H, Chen D L. Flame propagation in hybrid mixture of coal dust and methane[J]. Journal of Loss Prevention in the Process Industries, 2007, 20(4/5/6): 691-697. |
23 | Xie Y X, Raghavan V, Rangwala A S. Naturally entraining solid particle injector[J]. Powder Technology, 2011, 213(1/2/3): 199-201. |
24 | Botz J T, Loudon C, Bradley Barger J, et al. Effects of slope and particle size on ant locomotion: implications for choice of substrate by antlions[J]. Journal of the Kansas Entomological Society, 2003, 76(3): 426-435. |
25 | Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62-66. |
26 | Turns S R. An Introduction to Combustion: Concepts and Applications[M]. New York: McGaw-Hill, 2000:274-276. |
27 | Kalghatgi T G. Lift-off heights and visible lengths of vertical turbulent jet diffusion flames in still air[J]. Combustion Science and Technology, 1984, 41(1/2): 17-29. |
28 | Joedicke A, Peters N, Mansour M. The stabilization mechanism and structure of turbulent hydrocarbon lifted flames[J]. Proceedings of the Combustion Institute, 2005, 30(1): 901-909. |
29 | Westbrook C K, Dryer F L. Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames[J]. Combustion Science and Technology, 1981, 27(1/2): 31-43. |
30 | Delichatsios M A. Transition from momentum to buoyancy-controlled turbulent jet diffusion flames and flame height relationships[J]. Combustion and Flame, 1993, 92(4): 349-364. |
[1] | WU Yueqiong, ZHOU Kuibin, HUANG Mengyuan, ZHOU Mengya. Flame behavior of jet fire confined by the tank wall [J]. CIESC Journal, 2021, 72(5): 2896-2904. |
[2] | Xinsheng JIANG, Lin ZHANG, Donghai HE, Wenchao HU, Luxing LIU, Yadong ZHAO. Study on radiation and temperature characteristics of aviation kerosene fire with different sizes in pools combustion [J]. CIESC Journal, 2020, 71(3): 1398-1408. |
[3] | ZHOU Kuibin, LIU Jiaoyan, JIANG Juncheng. Analyses on dynamical process of high pressure combustible gas leakage and thermal hazard of jet fire [J]. CIESC Journal, 2018, 69(4): 1276-1287. |
[4] | SHI Junrui, LI Benwen, XU Youning, XUE Zhijia, WANG Shuqun. Flame characteristics for diffusion filtration combustion [J]. CIESC Journal, 2012, 63(11): 3500-3505. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 424
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 565
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||