1 |
施彦秋, 李天星. 建设跨国通道保障能源安全[J]. 中国石油企业, 2012, (9): 44-47.
|
|
Shi Y Q, Li T X. Building transnational channels to ensure energy security [J]. China Petroleum Enterprise, 2012, (9): 44-47.
|
2 |
Lowesmith B J, Hankinson G. Large scale high pressure jet fires involving natural gas and natural gas/hydrogen mixtures[J]. Process Safety and Environmental Protection, 2012, 90(2): 108-120.
|
3 |
Lowesmith B J, Hankinson G. Large scale experiments to study fires following the rupture of high pressure pipelines conveying natural gas and natural gas/hydrogen mixtures[J]. Process Safety and Environmental Protection, 2013, 91(1/2): 101-111.
|
4 |
Wang Q, Hu L H, Zhang M, et al. Lift-off of jet diffusion flame in sub-atmospheric pressures: an experimental investigation and interpretation based on laminar flame speed[J]. Combustion and Flame, 2014, 161(4): 1125-1130.
|
5 |
Zhou K B, Qin X L, Zhang L, et al. An experimental study of jet fires in rotating flow fields[J]. Combustion and Flame, 2019, 210: 193-203.
|
6 |
Zhou K B, Wang Y Z, Zhang L, et al. Effect of nozzle exit shape on the geometrical features of horizontal turbulent jet flame[J]. Fuel, 2020, 260: 116356.
|
7 |
Liu C C, Huang L Y, Deng T D, et al. On the influence of nozzle geometry on jet diffusion flames under cross-wind[J]. Fuel, 2020, 263: 116549.
|
8 |
Zhou Z H, Chen G H, Zhou C L, et al. Experimental study on determination of flame height and lift-off distance of rectangular source fuel jet fires[J]. Applied Thermal Engineering, 2019, 152: 430-436.
|
9 |
Liu C C, Liu X L, Ge H, et al. On the influence of distance between two jets on flickering diffusion flames[J]. Combustion and Flame, 2019, 201: 23-30.
|
10 |
Ranganathan S, Rockwell S R, Petrow D, et al. Radiative fraction of dust entrained turbulent premixed flames[J]. Journal of Loss Prevention in the Process Industries, 2018, 51: 65-71.
|
11 |
Christophe P, Rim B M, Mohamed G, et al. Thermal radiation in dust flame propagation[J]. Journal of Loss Prevention in the Process Industries, 2017, 49: 896-904.
|
12 |
Moghadasi H, Malekian N, Bidabadi M, et al. Analytical modeling of counterflow non-premixed organic particles combustion: Thermal radiation effects[J]. Fuel Processing Technology, 2019, 185: 139-150.
|
13 |
Vovchuk J I, Poletaev N I. The temperature field of a laminar diffusion dust flame[J]. Combustion and Flame, 1994, 99(3/4): 706-712.
|
14 |
Demir S, Bychkov V, Chalagalla S H R, et al. Towards a predictive scenario of a burning accident in a mining passage[J]. Combustion Theory and Modelling, 2017, 21(6): 997-1022.
|
15 |
Xie Y X, Raghavan V, Rangwala A S. Study of interaction of entrained coal dust particles in lean methane-air premixed flames[J]. Combustion and Flame, 2012, 159(7): 2449-2456.
|
16 |
Rockwell S R, Rangwala A S. Influence of coal dust on premixed turbulent methane-air flames[J]. Combustion and Flame, 2013, 160(3): 635-640.
|
17 |
Ranganathan S, Lee M, Akkerman V, et al. Suppression of premixed flames with inert particles[J]. Journal of Loss Prevention in the Process Industries, 2015, 35: 46-51.
|
18 |
Lee M, Ranganathan S, Rangwala A S. Influence of the reactant temperature on particle entrained laminar methane-air premixed flames[J]. Proceedings of the Combustion Institute, 2015, 35(1): 729-736.
|
19 |
Rockwell S R, Rangwala A S. Modeling of dust air flames[J]. Fire Safety Journal, 2013, 59: 22-29.
|
20 |
Bidabadi M, Bozorg M V, Bordbar V, et al. Flame propagation through heterogeneous combustion of hybrid aluminum-boron poly-disperse particle suspensions in air[J]. Fuel, 2018, 215: 714-725.
|
21 |
Seshadri K, Berlad A L, Tangirala V. The structure of premixed particle-cloud flames[J]. Combustion and Flame, 1992, 89(3/4): 333-342.
|
22 |
Liu Y, Sun J H, Chen D L. Flame propagation in hybrid mixture of coal dust and methane[J]. Journal of Loss Prevention in the Process Industries, 2007, 20(4/5/6): 691-697.
|
23 |
Xie Y X, Raghavan V, Rangwala A S. Naturally entraining solid particle injector[J]. Powder Technology, 2011, 213(1/2/3): 199-201.
|
24 |
Botz J T, Loudon C, Bradley Barger J, et al. Effects of slope and particle size on ant locomotion: implications for choice of substrate by antlions[J]. Journal of the Kansas Entomological Society, 2003, 76(3): 426-435.
|
25 |
Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62-66.
|
26 |
Turns S R. An Introduction to Combustion: Concepts and Applications[M]. New York: McGaw-Hill, 2000:274-276.
|
27 |
Kalghatgi T G. Lift-off heights and visible lengths of vertical turbulent jet diffusion flames in still air[J]. Combustion Science and Technology, 1984, 41(1/2): 17-29.
|
28 |
Joedicke A, Peters N, Mansour M. The stabilization mechanism and structure of turbulent hydrocarbon lifted flames[J]. Proceedings of the Combustion Institute, 2005, 30(1): 901-909.
|
29 |
Westbrook C K, Dryer F L. Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames[J]. Combustion Science and Technology, 1981, 27(1/2): 31-43.
|
30 |
Delichatsios M A. Transition from momentum to buoyancy-controlled turbulent jet diffusion flames and flame height relationships[J]. Combustion and Flame, 1993, 92(4): 349-364.
|