CIESC Journal ›› 2018, Vol. 69 ›› Issue (4): 1276-1287.DOI: 10.11949/j.issn.0438-1157.20170707
Previous Articles Next Articles
ZHOU Kuibin, LIU Jiaoyan, JIANG Juncheng
Received:
2017-06-01
Revised:
2017-10-11
Online:
2018-04-05
Published:
2018-04-05
Supported by:
supported by the National Key R&D Program of China (2016YFC0800100) and the National Natural Science Foundation of China (51506082).
周魁斌, 刘娇艳, 蒋军成
通讯作者:
周魁斌
基金资助:
国家重点研发计划项目(2016YFC0800100);国家自然科学基金项目(51506082)。
CLC Number:
ZHOU Kuibin, LIU Jiaoyan, JIANG Juncheng. Analyses on dynamical process of high pressure combustible gas leakage and thermal hazard of jet fire[J]. CIESC Journal, 2018, 69(4): 1276-1287.
周魁斌, 刘娇艳, 蒋军成. 高压可燃气体泄漏动力学过程与喷射火热灾害分析[J]. 化工学报, 2018, 69(4): 1276-1287.
[1] | BECKER H A, HOTTEL H C, WILLIAMS G C. The nozzle-fluid concentration field of the round, turbulent, free jet[J]. Journal of Fluid Mechanics, 1967, 30(2):285-303. |
[2] | ANTONIA R A, PRABHU A, STEPHENSON S E. Conditionally sampled measurements in a heated turbulent jet[J]. Journal of Fluid Mechanics, 1975, 72(3):455-480. |
[3] | VENKATARAMANI K S, TUTU N K, CHEVRAY R. Probability distributions in a round heated jet[J]. Physics of Fluids 1975, 18(11):1413-1420. |
[4] | BIRCH A D, BROWN D R, DODSON M G, et al. The structure and concentration decay of high pressure jets of natural gas[J]. Combustion Science and Technology, 1984, 36(5/6):249-261. |
[5] | BIRCH A D, HUGHES D J, SWAFFIELD F. Velocity decay of high pressure jets[J]. Combustion Science and Technology, 1987, 52(1/2/3):161-171. |
[6] | CHENOWETH D R, PAOLUCCI S. Compressible flow of a two-phase fluid between finite vessels(Ⅰ):Ideal carrier gas[J]. International Journal of Multiphase Flow, 1990, 16(6):1047-1069. |
[7] | CHENOWETH D R, PAOLUCCI S. Compressible flow of a two-phase fluid between finite vessels(Ⅱ):Abel-Noble carrier gas[J]. International Journal of Multiphase Flow, 1992, 5(5):669-689. |
[8] | SCHEFER R W, HOUF W G, WILLIAMS T C, et al. Characterization of high-pressure, underexpanded hydrogen-jet flames[J]. International Journal of Hydrogen Energy, 2007, 32(12):2081-2093. |
[9] | 董玉华, 周敬恩, 高惠临, 等. 长输管道稳态气体泄漏率的计算[J]. 油气储运, 2002, 21(8):11-15. DONG Y H, ZHOU J E, GAO H L, et al. Estimation of steady state gas release flow rate in long distance pipeline[J]. Oil & Gas Storage and Transportation, 2002, 21(8):11-15. |
[10] | 刘延雷, 徐平, 郑津洋, 等. 管道输运高压氢气与天然气的泄漏扩散数值模拟[J]. 太阳能学报, 2008, 29(10):1252-1255. LIU Y L, XU P, ZHENG J Y, et al. Numerical simulation on the dispersion of hydrogen and natural gas due to high pressured pipeline leakage[J]. Acta Energiae Solaris Sinica, 2008, 29(10):1252-1255. |
[11] | 徐平, 刘鹏飞, 刘延雷, 等. 高压储氢罐不同位置泄漏扩散的数值模拟研究[J]. 高校化学工程学报, 2008, 22(6):921-926. XU P, LIU P F, LIU Y L, et al. Numerical simulation on the leakage and diffusion of hydrogen due to high pressured storage tank failure at different positions[J]. Journal of Chemical Engineering of Chinese Universities, 2008, 22(6):921-926. |
[12] | 余照, 袁杰红. 储氢罐泄漏扩散规律的数值仿真分析[J]. 化学工程与装备, 2008, (9):19-21. YU Z, YUAN J H. Simulation and analysis on hydrogen tank leaking[J]. Chemical Engineering & Equipment, 2008, (9):19-21. |
[13] | WOODWARD J L, MUDAN K S. Liquid and gas discharge rates through holes in process vessels[J]. Journal of Loss Prevention in the Process Industries, 1991, 4(3):161-165. |
[14] | 李雪芳, 毕景良, 柯道友. 高压氢气储存系统泄漏的热力学模型[J]. 清华大学学报(自然科学版), 2013, 53(4):503-508. LI X F, BI J L, KE D Y. Thermodynamic models of leaks from high-pressure hydrogen storage systems[J]. Journal of Tsinghua University (Science and Technology), 2013, 53(4):503-508. |
[15] | 李雪芳, 毕景良, 林曦鹏, 等. 高压氢气泄漏扩散数值模拟[J]. 工程热物理学报, 2014, 35(12):2482-2485. LI X F, BI J L, LIN X P, et al. Numerical simulation of high pressure hydrogen release and dispersion[J]. Journal of Engineering Thermophysics, 2014, 35(12):2482-2485. |
[16] | HAWTHORNE W R, WEDDELL D S, HOTTEL H C. Mixing and combustion in turbulent gas jets[J]. Symposium on Combustion and Flame, and Explosion Phenomena, 1948, 3(1):266-288. |
[17] | HOTTEL H C, HAWTHORNE W R. Diffusion in laminar flame jets[J]. Symposium on Combustion & Flame & Explosion Phenomena, 1948, 3(1):254-266. |
[18] | BECKER H A, LIANG D. Visible length of vertical free turbulent diffusion flames[J]. Combustion and Flame, 1978, 32:115-137. |
[19] | BECKER H A, YAMAZAKI S, BECKER H A, et al. Entrainment, momentum flux and temperature in vertical free turbulent diffusion flames[J]. Combustion & Flame, 1978, 33(78):123-149. |
[20] | KALGHATGI G T. Lift-off heights and visible lengths of vertical turbulent jet diffusion flames in still air[J]. Combustion Science and Technology, 1984, 41(1/2):17-29. |
[21] | SURIS A L, FLANKIN E V, SHORIN S N. Length of free diffusion flames[J]. Combustion, Explosion and Shock Waves, 1977, 13(4):459-462. |
[22] | SONJU O K, HUSTAD J. An experimental study of turbulent jet diffusion flames[J]. Norwegian Maritime Research, 1984, 4(12):2-11. |
[23] | PETERS N, GÖ TTGENS J. Scaling of buoyant turbulent jet diffusion flames[J]. Combustion and Flame, 1991, 85(1):206-214. |
[24] | COSTA M, PARENTE C, SANTOS A. Nitrogen oxides emissions from buoyancy and momentum controlled turbulent methane jet diffusion flames[J]. Experimental Thermal and Fluid Science, 2004, 28(7):729-734. |
[25] | SANTOS A, COSTA M. Reexamination of the scaling laws for NOx emissions from hydrocarbon turbulent jet diffusion flames[J]. Combustion and Flame, 2005, 142(1/2):160-169. |
[26] | KIRAN D Y, MISHRA D P. Experimental studies of flame stability and emission characteristics of simple LPG jet diffusion flame[J]. Fuel, 2007, 86(10/11):1545-1551. |
[27] | PALACIOS A, MUÑOZ M, CASAL J. Jet fires:an experimental study of the main geometrical features of the flame in subsonic and sonic regimes[J]. AIChE Journal, 2009, 55(1):256-263. |
[28] | ZUKOSKI E E, KUBOTA T, CETEGEN B. Entrainment in fire plumes[J]. Fire Safety Journal, 1981, 3(3):107-121. |
[29] | SUGAWA O, SAKAI K. Flame length and width produced by ejected propane gas fuel from a pipe[J]. Fire Science and Technology, 1997, 17(1):55-63. |
[30] | HESKESTAD G. On Q* and the dynamics of turbulent diffusion flames[J]. Fire Safety Journal, 1998, 30(3):215-227. |
[31] | DELICHATSIOS M A. Transition from momentum to buoyancy-controlled turbulent jet diffusion flames and flame height relationships[J]. Combustion and Flame, 1993, 92(4):349-364. |
[32] | SCHEFER R W, HOUF W G, BOURNE B, et al. Spatial and radiative properties of an open-flame hydrogen plume[J]. International Journal of Hydrogen Energy, 2006, 31(10):1332-1340. |
[33] | MOGI T, HORIGUCHI S. Experimental study on the hazards of high-pressure hydrogen jet diffusion flames[J]. Journal of Loss Prevention in the Process Industries, 2009, 22(1):45-51. |
[34] | STUDER E, JAMOIS D, JALLAIS S, et al. Properties of large-scale methane/hydrogen jet fires[J]. International Journal of Hydrogen Energy, 2009, 34(23):9611-9619. |
[35] | KALGHATGI G T. The visible shape and size of a turbulent hydrocarbon jet diffusion flame in a cross-wind[J]. Combustion & Flame, 1983, 52(1):91-106. |
[36] | HUANG R F, CHANG J M. The stability and visualized flame and flow structures of a combusting jet in cross-flow[J]. Combustion and Flame, 1994, 98(3):267-278. |
[37] | CHAMBERLAIN G A. Developments in design methods for predicting thermal radiation from flare[J]. Chemical Engineering Research & Design, 1987, 65(4):299-309. |
[38] | 王大庆, 高惠临, 霍春勇, 等. 天然气管道泄漏射流火焰形貌研究[J]. 油气储运, 2006, 25(2):47-49. WANG D Q, GAO H L, HUO C Y, et al. Study on the jet-fire shapes of gas pipeline[J]. Oil & Gas Storage and Transportation, 2006, 25(2):47-49. |
[39] | 王兆芹, 冯文兴, 程五一. 高压输气管道喷射火几何尺寸和危险半径的研究[J]. 安全与环境工程, 2009, 16(5):108-110. WANG Z Q, FENG W X, CHENG W Y. Analysis of geometry and hazardous radius of jet flame from high-pressure natural gas pipeline[J]. Safety and Environmental Engineering, 2009, 16(5):108-110. |
[40] | MAJESKI A J, WILSON D J, KOSTIUK L W. Predicting the length of low-momentum jet diffusion flames in crossflow[J]. Combustion Science and Technology, 2004, 176(12):2001-2025. |
[41] | 林树宝. 外界风下低动量湍流射流扩散火焰图像特征与燃烧特性[D]. 合肥:中国科学技术大学, 2015. LIN S B. Low-momentum turbulent jet diffusion flame's image parameters and combustion characteristics[D]. Hefei:University of Science and Technology of China, 2015. |
[42] | 门庆民. 不同低环境压力下扩散射流火焰高度的实验研究[J]. 消防科学与技术, 2013, 32(10):1067-1069. MEN Q M. Experimental study on characteristics of the flame height of jet diffusion flame under different pressure conditions[J]. Fire Sci. Technol., 2013, 32(10):1067-1069. |
[43] | 王强. 不同环境条件下扩散射流火焰形态特征与推举、吹熄行为研究[D]. 合肥:中国科学技术大学, 2015. WANG Q. Studies on flame shape characteristics and life-off, blow-out behaviors of jet diffusion flames under different environmental conditions[D]. Hefei:University of Science and Technology of China, 2015. |
[44] | MCCAFFREY B J. Momentum diffusion flame characteristics and the effects of water spray[J]. Combustion Science and Technology, 1989, 63(4/5/6):315-335. |
[45] | BAGSTER D F, SCHUBACH S A. The prediction of jet-fire dimensions[J]. Journal of Loss Prevention in the Process Industries, 1996, 9(3):241-245. |
[46] | IMAMURA T, HAMADA S, MOGI T, et al. Experimental investigation on the thermal properties of hydrogen jet flame and hot currents in the downstream region[J]. International Journal of Hydrogen Energy, 2008, 33(13):3426-3435. |
[47] | PALACIOS A, CASAL J. Assessment of the shape of vertical jet fires[J]. Fuel, 2011, 90(2):824-833. |
[48] | SCHULLER R B, HUSTAD J, NYLUND J, et al. Effect of nozzle geometry on burning subsonic hydrocarbon jets[J]. Am. Soc. Mech. Eng., 1983, 25:33-36. |
[49] | TURNS S R, MYHR F H. Oxides of nitrogen emissions from turbulent jet flames(part Ⅰ):Fuel effects and flame radiation[J]. Combustion and Flame, 1991, 87(3/4):319-335. |
[50] | PETERS N, WILLIAMS F A. Liftoff characteristics of turbulent jet diffusion flames[J]. AIAA Journal, 1983, 21(3):423-429. |
[51] | GOPALASWAMI N, LIU Y, LABOUREUR D M, et al. Experimental study on propane jet fire hazards:comparison of main geometrical features with empirical models[J]. Journal of Loss Prevention in the Process Industries, 2016, 41:365-375. |
[52] | ZHOU K B, JIANG J C. Thermal radiation from vertical turbulent jet flame:line source model[J]. Journal of Heat Transfer, 2015, 138(4):042701. |
[53] | ZHOU K B, LIU J Y, JIANG J C. Prediction of radiant heat flux from horizontal propane jet fire[J]. Applied Thermal Engineering, 2016, 106:634-639. |
[54] | MUDAN K S. Thermal radiation hazards from hydrocarbon pool fires[J]. Progress in Energy & Combustion Science, 1984, 10(1):59-80. |
[55] | HANKINSON G, LOWESMITH B J. A consideration of methods of determining the radiative characteristics of jet fires[J]. Combustion & Flame, 2012, 159(3):1165-1177. |
[56] | 王曰燕, 罗金恒, 赵新伟, 等. 天然气输送管道火灾事故危险分析[J]. 天然气与石油, 2005, 23(3):34-36. WANG Y Y, LUO J H, ZHAO X W, et al. Analysis on hazardous fires in natural gas pipelines[J]. Nat. Gas Oil, 2005, 23(3):34-36. |
[57] | 沙锡东, 姜虹. LPG喷射火灾危害的研究和分析[J]. 工业安全与环保, 2010, 36(11):46-48. SHA X D, JIANG H. Researches and analyses of LPG jet fire hazards[J]. Industrial Safety and Environmental Protection, 2010, 36(11):46-48. |
[58] | 张网. 以"点源"模型计算可燃气体喷射火的伤害范围[C]//中国消防协会科学技术年会. 北京:中国科学技术出版社, 2011:197-200. ZHANG W. Calculate the damage range of combustible gas jet fire by using point source model[C]//Proceedings of the Annual Meeting of Sci. Technol. of CFPA. Beijing:China Science and Technology Press, 2011:197-200. |
[59] | LOWESMITH B J, HANKINSON G. Large scale high pressure jet fires involving natural gas and natural gas/hydrogen mixtures[J]. Process Safety & Environmental Protection, 2012, 90(2):108-120. |
[60] | SIVATHANU Y R, GORE J P. Total radiative heat loss in jet flames from single point radiative flux measurements[J]. Combustion and Flame, 1993, 94(3):265-270. |
[61] | MUDAN K S. Geometric view factors for thermal radiation hazard assessment[J]. Fire Safety Journal, 1987, 12(2):89-96. |
[62] | MERCEDES G M, MIGUEL M, JOAQUIM C. Radiant heat from propane jet fires[J]. Experimental Thermal and Fluid Science, 2010, 34(3):323-329. |
[63] | PALACIOS A, MUÑOZ M, DARBRA R M, et al. Thermal radiation from vertical jet fires[J]. Fire Safety Journal, 2012, 51:93-101. |
[64] | BAHRAMI Z, COOK J, WHITEHOUSE R J. A comprehensive program for calculation of flame radiation levels[J]. Journal of Loss Prevention in the Process Industries, 1990, 3(1):150-155. |
[65] | MOLINA A, SCHEFER R W, HOUF W G. Radiative fraction and optical thickness in large-scale hydrogen-jet fires[J]. Proceedings of the Combustion Institute, 2007, 31(2):2565-2572. |
[66] | MERCEDES G M, MIGUEL M, JOAQUIM C. Axial temperature distribution in vertical jet fires[J]. Journal of Hazardous Materials, 2009, 172(1):54. |
[67] | 陈国华, 黄庭枫, 梁栋. 分区域-多点源的高架火炬安全距离计算新模型[J]. 天然气工业, 2013, 33(12):25. CHEN G H, HUANG T F, LIANG D. A new safety distance calculation model of vertical jet fires based on sub-regions and multi-point sources[J]. Natural Gas Industry, 2013, 33(12):25. |
[68] | National Institute of Standards and Technology. Thermal radiation from large pool fires[R]. Gaithersburg,MD, USA:NIST, 2000. |
[69] | JO Y D, AHN B J. A method of quantitative risk assessment for transmission pipeline carrying natural gas[J]. Journal of Hazardous Materials, 2005, 123(1/2/3):1. |
[70] | LOWESMITH B J, HANKINSON G, ACTON M R, et al. An overview of the nature of hydrocarbon jet fire hazards in the oil and gas industry and a simplified approach to assessing the hazards[J]. Process Safety & Environmental Protection, 2007, 85(3):207-220. |
[71] | COOK D K, FAIRWEATHER M, HAMMONDS J, et al. Size and radiative characteristics of natural gas flares(Ⅱ):Empirical model[J]. Chemical Engineering Research & Design, 1987, 65(4):318-325. |
[72] | HOUF W, SCHEFER R. Predicting radiative heat fluxes and flammability envelopes from unintended releases of hydrogen[J]. International Journal of Hydrogen Energy, 2007, 32(1):136-151. |
[73] | SHOKRI M, BEYLER C L. Radiation from large pool fires[J]. Journal of Fire Protection Engineering, 1989, 1(1):141-149. |
[74] | NGAI E Y, FUHRHOP R, CHEN J R, et al. CGA G-13 large-scale silane release tests(Ⅰ):Silane jet flame impingement tests and thermal radiation measurement[J]. Journal of Loss Prevention in the Process Industries, 2014, 36:478-487. |
[1] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[2] | Mengya LIAN, Yingying TAN, Lin WANG, Feng CHEN, Yifei CAO. Heating performance of air preheated integrated ground water heat pump air-conditioning system [J]. CIESC Journal, 2023, 74(S1): 311-319. |
[3] | Zhenghao JIN, Lijie FENG, Shuhong LI. Energy and exergy analysis of a solution cross-type absorption-resorption heat pump using NH3/H2O as working fluid [J]. CIESC Journal, 2023, 74(S1): 53-63. |
[4] | Hao WANG, Zhenlei WANG. Model simplification strategy of cracking furnace coking based on adaptive spectroscopy method [J]. CIESC Journal, 2023, 74(9): 3855-3864. |
[5] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[6] | Xudong YU, Qi LI, Niancu CHEN, Li DU, Siying REN, Ying ZENG. Phase equilibria and calculation of aqueous ternary system KCl + CaCl2 + H2O at 298.2, 323.2, and 348.2 K [J]. CIESC Journal, 2023, 74(8): 3256-3265. |
[7] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[8] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[9] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[10] | Jintong LI, Shun QIU, Wenshou SUN. Oxalic acid and UV enhanced arsenic leaching from coal in flue gas desulfurization by coal slurry [J]. CIESC Journal, 2023, 74(8): 3522-3532. |
[11] | Yuying GUO, Jiaqiang JING, Wanni HUANG, Ping ZHANG, Jie SUN, Yu ZHU, Junxuan FENG, Hongjiang LU. Water-lubricated drag reduction and pressure drop model modification for heavy oil pipeline [J]. CIESC Journal, 2023, 74(7): 2898-2907. |
[12] | Xiaoyang LIU, Jianliang YU, Yujie HOU, Xingqing YAN, Zhenhua ZHANG, Xianshu LYU. Effect of spiral microchannel on detonation propagation of hydrogen-doped methane [J]. CIESC Journal, 2023, 74(7): 3139-3148. |
[13] | Chunyu LIU, Huanyu ZHOU, Yue MA, Changtao YUE. Drying characteristics and mathematical model of CaO-conditioned oil sludge [J]. CIESC Journal, 2023, 74(7): 3018-3027. |
[14] | Weiming SHAO, Wenxue HAN, Wei SONG, Yong YANG, Can CHEN, Dongya ZHAO. Dynamic soft sensor modeling method based on distributed Bayesian hidden Markov regression [J]. CIESC Journal, 2023, 74(6): 2495-2502. |
[15] | Yanhui LI, Shaoming DING, Zhouyang BAI, Yinan ZHANG, Zhihong YU, Limei XING, Pengfei GAO, Yongzhen WANG. Corrosion micro-nano scale kinetics model development and application in non-conventional supercritical boilers [J]. CIESC Journal, 2023, 74(6): 2436-2446. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||