CIESC Journal ›› 2021, Vol. 72 ›› Issue (5): 2869-2877.DOI: 10.11949/0438-1157.20201320
• Material science and engineering, nanotechnology • Previous Articles Next Articles
JIAO Shuai(),YANG Lei,WU Tingting,LI Hongqiang,LYU Huihong,HE Xiaojun()
Received:
2020-09-17
Revised:
2020-11-23
Online:
2021-05-05
Published:
2021-05-05
Contact:
HE Xiaojun
通讯作者:
何孝军
作者简介:
焦帅(1994—),男,硕士研究生,基金资助:
CLC Number:
JIAO Shuai, YANG Lei, WU Tingting, LI Hongqiang, LYU Huihong, HE Xiaojun. Synthesis of nitrogen doped hierarchically porous carbon nanosheets for supercapacitor by mixed salt template[J]. CIESC Journal, 2021, 72(5): 2869-2877.
焦帅, 杨磊, 武婷婷, 李宏强, 吕辉鸿, 何孝军. 混合盐模板法制备超级电容器用氮掺杂分级多孔碳纳米片[J]. 化工学报, 2021, 72(5): 2869-2877.
Add to citation manager EndNote|Ris|BibTeX
Samples | Dap/ nm | SBET/ (m2·g-1) | Smic/ (m2·g-1) | Vt/ (cm3·g-1) | Vmic/ (cm3·g-1) |
---|---|---|---|---|---|
NHCN3 | 2.46 | 1453 | 1244 | 0.89 | 0.78 |
NHCN4 | 2.63 | 1597 | 1482 | 1.05 | 1.00 |
NHCN5 | 2.40 | 1324 | 309 | 0.79 | 0.16 |
Table 1 The pore structure parameters of NHCNs
Samples | Dap/ nm | SBET/ (m2·g-1) | Smic/ (m2·g-1) | Vt/ (cm3·g-1) | Vmic/ (cm3·g-1) |
---|---|---|---|---|---|
NHCN3 | 2.46 | 1453 | 1244 | 0.89 | 0.78 |
NHCN4 | 2.63 | 1597 | 1482 | 1.05 | 1.00 |
NHCN5 | 2.40 | 1324 | 309 | 0.79 | 0.16 |
Samples | Element content/%(atom) | N 1s content/%(atom) | ||||
---|---|---|---|---|---|---|
C 1s | O 1s | N 1s | N-5 | N-6 | N-Q | |
NHCN3 | 86.76 | 9.61 | 3.63 | 1.11 | 1.35 | 1.17 |
NHCN4 | 89.46 | 6.82 | 3.72 | 1.46 | 0.86 | 1.40 |
NHCN5 | 93.04 | 4.94 | 2.03 | 0.59 | 0.75 | 0.69 |
Table 2 Contents of carbon, oxygen and nitrogen elements in NHCNs
Samples | Element content/%(atom) | N 1s content/%(atom) | ||||
---|---|---|---|---|---|---|
C 1s | O 1s | N 1s | N-5 | N-6 | N-Q | |
NHCN3 | 86.76 | 9.61 | 3.63 | 1.11 | 1.35 | 1.17 |
NHCN4 | 89.46 | 6.82 | 3.72 | 1.46 | 0.86 | 1.40 |
NHCN5 | 93.04 | 4.94 | 2.03 | 0.59 | 0.75 | 0.69 |
Fig.5 CV curves of NHCN electrodes at the scan rate of 2 mV·s-1(a); CV curves of NHCN4 electrode at different scan rates (b); GCD curves of NHCN electrodes at 0.05 A·g-1 (c); Specific capacitance of NHCN electrodes at various current densities (d)
Samples | Specific capacitance/(F·g-1) | Ref. |
---|---|---|
NHCN4 | 239 (0.05 A·g-1) | this work |
PB-15 | 199 (0.5 A·g-1) | [ |
ET-rGO | 124 (0.1 A·g-1) | [ |
HPC/500/1/6∶1 | 143 (0.625 A·g-1) | [ |
P-C-600 | 168 (1 A·g-1) | [ |
N-HPC-900 | 128.5 (0.2 A·g-1) | [ |
Table 3 The specific capacitance of different carbon electrode materials
Samples | Specific capacitance/(F·g-1) | Ref. |
---|---|---|
NHCN4 | 239 (0.05 A·g-1) | this work |
PB-15 | 199 (0.5 A·g-1) | [ |
ET-rGO | 124 (0.1 A·g-1) | [ |
HPC/500/1/6∶1 | 143 (0.625 A·g-1) | [ |
P-C-600 | 168 (1 A·g-1) | [ |
N-HPC-900 | 128.5 (0.2 A·g-1) | [ |
Fig.6 Ragone plots of NHCN capacitors(a); Nyquist plots of NHCN electrodes (b); Bode plots of NHCN electrodes (c); Capacitance retention of NHCN4 electrode at 5 A·g-1 after 10000 cycles (d)
1 | Banham D, Choi J Y, Kishimoto T, et al. Integrating PGM-free catalysts into catalyst layers and proton exchange membrane fuel cell devices[J]. Advanced Materials, 2019, 31(31): 1804846. |
2 | Sun N, Zhu Q Z, Anasori B, et al. MXene-bonded flexible hard carbon film as anode for stable Na/K-ion storage[J]. Advanced Functional Materials, 2019, 29(51): 1906282. |
3 | Liu T, Zhang F, Song Y, et al. Revitalizing carbon supercapacitor electrodes with hierarchical porous structures[J]. Journal of Materials Chemistry A, 2017, 5(34): 17705-17733. |
4 | Fang K, Liu D, Xiang X Y, et al. Air-stable red phosphorus anode for potassium/sodium-ion batteries enabled through dual-protection design[J]. Nano Energy, 2020, 69: 104451. |
5 | She Z M, Ghosh D, Pope M A. Decorating graphene oxide with ionic liquid nanodroplets: an approach leading to energy-dense, high-voltage supercapacitors[J]. ACS Nano, 2017, 11(10): 10077-10087. |
6 | Jayaramulu K, Dubal D P, Nagar B, et al. Ultrathin hierarchical porous carbon nanosheets for high-performance supercapacitors and redox electrolyte energy storage[J]. Advanced Materials, 2018, 30(15): 1705789. |
7 | Wang Y G, Song Y F, Xia Y Y. Electrochemical capacitors: mechanism, materials, systems, characterization and applications[J]. Chemical Society Reviews, 2016, 45(21): 5925-5950. |
8 | He X J, Ling P H, Qiu J S, et al. Efficient preparation of biomass-based mesoporous carbons for supercapacitors with both high energy density and high power density[J]. Journal of Power Sources, 2013, 240: 109-113. |
9 | Li J H, Liu Z C, Zhang Q B, et al. Anion and cation substitution in transition-metal oxides nanosheets for high-performance hybrid supercapacitors[J]. Nano Energy, 2019, 57: 22-33. |
10 | Fu L J, Qu Q T, Holze R, et al. Composites of metal oxides and intrinsically conducting polymers as supercapacitor electrode materials: the best of both worlds?[J]. Journal of Materials Chemistry A, 2019, 7(25): 14937-14970. |
11 | Han Y Q, Dai L M. Conducting polymers for flexible supercapacitors[J]. Macromolecular Chemistry and Physics, 2019, 220(3): 1800355. |
12 | Zhang G L, Guan T T, Cheng M, et al. Harvesting honeycomb-like carbon nanosheets with tunable mesopores from mild-modified coal tar pitch for high-performance flexible all-solid-state supercapacitors[J]. Journal of Power Sources, 2020, 448: 227446. |
13 | Jiang H, Lee P S, Li C Z. 3D carbon based nanostructures for advanced supercapacitors[J]. Energy & Environmental Science, 2013, 6(1): 41-53. |
14 | Li X G, Guan B Y, Gao S Y, et al. A·general dual-templating approach to biomass-derived hierarchically porous heteroatom-doped carbon materials for enhanced electrocatalytic oxygen reduction[J]. Energy & Environmental Science, 2019, 12(2): 648-655. |
15 | 魏风, 毕宏晖, 焦帅, 等. 超级电容器用相互连接的类石墨烯纳米片[J]. 物理化学学报, 2020, 36(2): 142-149. |
Wei F, Bi H H, Jiao S, et al. Interconnected graphene-like nanosheets for supercapacitors[J]. Acta Physico-Chimica Sinica, 2020, 36(2): 142-149. | |
16 | Xie X Y, He X J, Zhang H F, et al. Interconnected sheet-like porous carbons from coal tar by a confined soft-template strategy for supercapacitors[J]. Chemical Engineering Journal, 2018, 350: 49-56. |
17 | He X J, Zhang H B, Zhang H, et al. Direct synthesis of 3D hollow porous graphene balls from coal tar pitch for high performance supercapacitors[J]. Journal of Materials Chemistry A, 2014, 2(46): 19633-19640. |
18 | He X J, Li X J, Ma H, et al. ZnO template strategy for the synthesis of 3D interconnected graphene nanocapsules from coal tar pitch as supercapacitor electrode materials[J]. Journal of Power Sources, 2017, 340: 183-191. |
19 | Wei F, He X J, Ma L B, et al. 3D N, O-codoped egg-box-like carbons with tuned channels for high areal capacitance supercapacitors[J]. Nano-Micro Letters, 2020, 12(1): 1-12. |
20 | Gao S S, Tang Y K, Wang L, et al. Coal-based hierarchical porous carbon synthesized with a soluble salt self-assembly-assisted method for high performance supercapacitors and Li-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 3255-3263. |
21 | Hunsom M, Autthanit C. Adsorptive purification of crude glycerol by sewage sludge-derived activated carbon prepared by chemical activation with H3PO4, K2CO3 and KOH[J]. Chemical Engineering Journal, 2013, 229: 334-343. |
22 | He X J, Xie X Y, Wang J X, et al. From fluorene molecules to ultrathin carbon nanonets with an enhanced charge transfer capability for supercapacitors[J]. Nanoscale, 2019, 11(14): 6610-6619. |
23 | Borchardt L, Leistenschneider D, Haase J, et al. Revising the concept of pore hierarchy for ionic transport in carbon materials for supercapacitors[J]. Advanced Energy Materials, 2018, 8(24): 1800892. |
24 | Zhao C R, Wang W K, Yu Z B, et al. Nano-CaCO3 as template for preparation of disordered large mesoporous carbon with hierarchical porosities[J]. Journal of Materials Chemistry, 2010, 20(5): 976-980. |
25 | Dong S A, He X J, Zhang H F, et al. Surface modification of biomass-derived hard carbon by grafting porous carbon nanosheets for high-performance supercapacitors[J]. Journal of Materials Chemistry A, 2018, 6(33): 15954-15960. |
26 | Wan L, Song P, Liu J X, et al. Facile synthesis of nitrogen self-doped hierarchical porous carbon derived from pine pollen via MgCO3 activation for high-performance supercapacitors[J]. Journal of Power Sources, 2019, 438: 227013. |
27 | Sun F, Gao J H, Liu X, et al. High-energy Li-ion hybrid supercapacitor enabled by a long life N-rich carbon based anode[J]. Electrochimica Acta, 2016, 213: 626-632. |
28 | Wu F M, Gao J P, Zhai X G, et al. Hierarchical porous carbon microrods derived from albizia flowers for high performance supercapacitors[J]. Carbon, 2019, 147: 242-251. |
29 | 赵婧, 龚俊伟, 李一举, 等. 自掺杂氮多孔交联碳纳米片在超级电容器中的应用[J]. 化学学报, 2018, 76(2): 107-112. |
Zhao J, Gong J W, Li Y J, et al. Self N-doped porous interconnected carbon nanosheets material for supercapacitors[J]. Acta Chimica Sinica, 2018, 76(2): 107-112. | |
30 | 毕宏晖, 焦帅, 魏风, 等. 珊瑚状氮掺杂多孔碳的制备及其超电容性能[J]. 化工学报, 2020, 71(6): 2880-2888. |
Bi H H, Jiao S, Wei F, et al. Preparation of coral-like nitrogen-doped porous carbons and its supercapacitive properties[J]. CIESC Journal, 2020, 71(6): 2880-2888. | |
31 | Zhang M, Chen M, Reddeppa N, et al. Nitrogen self-doped carbon aerogels derived from trifunctional benzoxazine monomers as ultralight supercapacitor electrodes[J]. Nanoscale, 2018, 10(14): 6549-6557. |
32 | Zhang X Z, Raj D V, Zhou X F, et al. Solvent evaporation induced graphene powder with high volumetric capacitance and outstanding rate capability for supercapacitors[J]. Journal of Power Sources, 2018, 382: 95-100. |
33 | Pang L Y, Zou B, Zou Y C, et al. A new route for the fabrication of corn starch-based porous carbon as electrochemical supercapacitor electrode material[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 504: 26-33. |
34 | Xu D, Ding Q J, Li J X, et al. A sheet-like MOF-derived phosphorus-doped porous carbons for supercapacitor electrode materials[J]. Inorganic Chemistry Communications, 2020, 119: 108141. |
35 | Shang Z, An X Y, Liu L Q, et al. Chitin nanofibers as versatile bio-templates of zeolitic imidazolate frameworks for N-doped hierarchically porous carbon electrodes for supercapacitor[J]. Carbohydrate Polymers, 2021, 251: 117107. |
36 | Zhang G L, Guan T T, Qiao J L, et al. Free-radical-initiated strategy aiming for pitch-based dual-doped carbon nanosheets engaged into high-energy asymmetric supercapacitors[J]. Energy Storage Materials, 2020, 26: 119-128. |
37 | Xu R X, Zhao Y P, Liu G H, et al. N/O co-doped porous interconnected carbon nanosheets from the co-hydrothermal treatment of soybean stalk and nickel nitrate for high-performance supercapacitors[J]. Journal of Colloid and Interface Science, 2020, 558: 211-219. |
38 | Deng Y F, Xie Y, Zou K X, et al. Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors[J]. Journal of Materials Chemistry A, 2016, 4(4): 1144-1173. |
39 | 乐丹, 杨建校, 孙兵, 等. 中空氮掺杂沥青基活性炭纤维的结构调控与电化学性能[J]. 新型炭材料, 2020, 35(1): 50-57. |
Yue D, Yang J X, Sun B, et al. Preparation and electrochemical performance of the N-doped hollow pitch-based activated carbon fibers as supercapacitor electrodes[J]. New Carbon Materials, 2020, 35(1): 50-57. | |
40 | Zhao G Y, Chen C, Yu D F, et al. One-step production of O-N-S co-doped three-dimensional hierarchical porous carbons for high-performance supercapacitors[J]. Nano Energy, 2018, 47: 547-555. |
[1] | Chao HU, Yuming DONG, Wei ZHANG, Hongling ZHANG, Peng ZHOU, Hongbin XU. Preparation of high-concentration positive electrolyte of vanadium redox flow battery by activating vanadium pentoxide with highly concentrated sulfuric acid [J]. CIESC Journal, 2023, 74(S1): 338-345. |
[2] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[3] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[4] | Longyi LYU, Wenbo JI, Muda HAN, Weiguang LI, Wenfang GAO, Xiaoyang LIU, Li SUN, Pengfei WANG, Zhijun REN, Guangming ZHANG. Enhanced anaerobic removal of halogenated organic pollutants by iron-based conductive materials: research progress and future perspectives [J]. CIESC Journal, 2023, 74(8): 3193-3202. |
[5] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[6] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[7] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[8] | Chao KANG, Jinpeng QIAO, Shengchao YANG, Chao PENG, Yuanpeng FU, Bin LIU, Jianrong LIU, Aleksandrova TATIANA, Chenlong DUAN. Research progress on activation extraction of valuable metals in coal gangue [J]. CIESC Journal, 2023, 74(7): 2783-2799. |
[9] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[10] | Xueyan WEI, Yong QIAN. Experimental study on the low to medium temperature oxidation characteristics and kinetics of micro-size iron powder [J]. CIESC Journal, 2023, 74(6): 2624-2638. |
[11] | Jing LI, Conghao SHEN, Daliang GUO, Jing LI, Lizheng SHA, Xin TONG. Research progress in the application of lignin-based carbon fiber composite materials in energy storage components [J]. CIESC Journal, 2023, 74(6): 2322-2334. |
[12] | Jipeng ZHOU, Wenjun HE, Tao LI. Reaction engineering calculation of deactivation kinetics for ethylene catalytic oxidation over irregular-shaped catalysts [J]. CIESC Journal, 2023, 74(6): 2416-2426. |
[13] | Xu GUO, Yongzheng ZHANG, Houbing XIA, Na YANG, Zhenzhen ZHU, Jingyao QI. Research progress in the removal of water pollutants by carbon-based materials via electrooxidation [J]. CIESC Journal, 2023, 74(5): 1862-1874. |
[14] | Zheng ZHANG, Yongping HE, Haidong SUN, Rongzi ZHANG, Zhengping SUN, Jinlan CHEN, Yixuan ZHENG, Xiao DU, Xiaogang HAO. Electrochemically switched ion exchange device with serpentine flow field for selective extraction of lithium [J]. CIESC Journal, 2023, 74(5): 2022-2033. |
[15] | Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate [J]. CIESC Journal, 2023, 74(5): 2207-2216. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||