CIESC Journal ›› 2021, Vol. 72 ›› Issue (S1): 7-20.DOI: 10.11949/0438-1157.20201494
• Reviews and monographs • Previous Articles Next Articles
LIANG Heng(),LIU Yicai(),WANG Qianxu,ZHAO Xiangle,LI Zheng
Received:
2020-10-28
Revised:
2021-01-12
Online:
2021-06-20
Published:
2021-06-20
Contact:
LIU Yicai
通讯作者:
刘益才
作者简介:
梁恒(1996—),男,硕士研究生,基金资助:
CLC Number:
LIANG Heng, LIU Yicai, WANG Qianxu, ZHAO Xiangle, LI Zheng. Research progress of effective thermal conductivity of open-cell foam metal composites[J]. CIESC Journal, 2021, 72(S1): 7-20.
梁恒, 刘益才, 汪谦旭, 赵祥乐, 李政. 开孔泡沫金属复合材料有效热导率的研究进展[J]. 化工学报, 2021, 72(S1): 7-20.
Add to citation manager EndNote|Ris|BibTeX
1 | Tauseef-ur-rehman, Ali H M, Janjua M M, et al. A critical review on heat transfer augmentation of phase change materials embedded with porous materials/foams [J]. International Journal of Heat and Mass Transfer, 2019, 135: 649-673. |
2 | Tao Y B, He Y L. A review of phase change material and performance enhancement method for latent heat storage system [J]. Renewable and Sustainable Energy Reviews, 2018, 93: 245-259. |
3 | 林瑞泰. 多孔介质传热传质引论[M]. 北京: 科学出版社, 1995. |
Lin R T. Introduction to Heat and Mass Transfer in Porous Media [M]. Beijing: Science Press, 1995. | |
4 | Mendes M A A, Skibina V, Talukdar P, et al. Experimental validation of simplified conduction-radiation models for evaluation of effective thermal conductivity of open-cell metal foams at high temperatures [J]. International Journal of Heat and Mass Transfer, 2014, 78: 112-120. |
5 | Landauer R. The electrical resistance of binary metallic mixtures [J]. Journal of Applied Physics, 1952, 23(7): 779-784. |
6 | Hashin Z, Shtrikman S. A variational approach to the theory of the effective magnetic permeability of multiphase materials [J]. Journal of Applied Physics, 1962, 33(10): 3125-3131. |
7 | Calmidi V V, Mahajan R L. The effective thermal conductivity of high porosity fibrous metal foams [J]. Journal of Heat Transfer, 1999, 121(2): 466-471. |
8 | Bhattacharya A, Calmidi V V, Mahajan R L. Thermophysical properties of high porosity metal foams [J]. International Journal of Heat and Mass Transfer, 2002, 45(5): 1017-1031. |
9 | Ackermann S, Scheffe J R, Duss J, et al. Morphological characterization and effective thermal conductivity of dual-scale reticulated porous structures [J]. Materials, 2014, 7(11): 7173-7195. |
10 | Jagjiwanram, Singh R. Effective thermal conductivity of highly porous two-phase systems [J]. Applied Thermal Engineering, 2004, 24(17/18): 2727-2735. |
11 | Chaudhary D R, Bhandari R C. Heat transfer through dispersed medium [J]. Pure and Applied Physics, 1968, 6: 135. |
12 | Singh R, Kasana H S. Computational aspects of effective thermal conductivity of highly porous metal foams [J]. Applied Thermal Engineering, 2004, 24(13): 1841-1849. |
13 | Kumar P, Topin F. Different arrangements of simplified models to predict effective thermal conductivity of open-cell foams [J]. Heat and Mass Transfer, 2017, 53(8): 2473-2486. |
14 | Paek J W, Kang B H, Kim S Y, et al. Effective thermal conductivity and permeability of aluminum foam materials [J]. International Journal of Thermophysics, 2000, 21(2): 453-464. |
15 | 吕兆华. 泡沫型多孔介质等效导热系数的计算[J]. 南京理工大学学报(自然科学版), 2001, 25(3): 257-261. |
Lü Z H. Calculation of effective thermal conductivity of foam porous media [J]. Journal of Nanjing University of Science and Technology, 2001, 25(3): 257-261. | |
16 | 徐伟强, 袁修干, 李贞. 泡沫金属基复合相变材料的有效导热系数研究[J]. 功能材料, 2009, 40(8): 1329-1332, 1337. |
Xu W Q, Yuan X G, Li Z. Study on effective thermal conductivity of metal foam matrix composite phase change materials [J]. Journal of Functional Materials, 2009, 40(8): 1329-1332, 1337. | |
17 | Edouard D. The effective thermal conductivity for “slim” and “fat” foams [J]. AIChE Journal, 2011, 57(6): 1646-1651. |
18 | Corasaniti S, De Luca E, Gori F. Effect of structure, porosity, saturating fluid and solid material on the effective thermal conductivity of open-cells foams [J]. International Journal of Heat and Mass Transfer, 2019, 138: 41-48. |
19 | 习常清, 李志强, 敬霖, 等. 开孔泡沫金属热传导性能的理论研究与数值模拟[J]. 稀有金属材料与工程, 2014, 43(3): 686-691. |
Xi C Q, Li Z Q, Jing L, et al. Theoretical study and numerical simulation of effective thermal conductivities of open-cell metallic foam [J]. Rare Metal Materials and Engineering, 2014, 43(3): 686-691. | |
20 | Zenner A, Edouard D. Revised cubic model for theoretical estimation of effective thermal conductivity of metal foams [J]. Applied Thermal Engineering, 2017, 113: 1313-1318. |
21 | 肖鑫. 多孔基相变蓄能材料的热质传递现象和机理研究[D]. 上海: 上海交通大学, 2015. |
Xiao X. Investigation on heat and mass transfer characteristics of composite phase change materials with porous media [D]. Shanghai: Shanghai Jiao Tong University, 2015. | |
22 | Huu T T, Lacroix M, Pham Huu C, et al. Towards a more realistic modeling of solid foam: use of the pentagonal dodecahedron geometry [J]. Chemical Engineering Science, 2009, 64(24): 5131-5142. |
23 | Boomsma K, Poulikakos D. On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam [J]. International Journal of Heat and Mass Transfer, 2001, 44(4): 827-836. |
24 | Dai Z, Nawaz K, Park Y G, et al. Correcting and extending the Boomsma-Poulikakos effective thermal conductivity model for three-dimensional, fluid-saturated metal foams [J]. International Communications in Heat and Mass Transfer, 2010, 37(6): 575-580. |
25 | Yang H, Zhao M, Gu Z L, et al. A further discussion on the effective thermal conductivity of metal foam: an improved model [J]. International Journal of Heat and Mass Transfer, 2015, 86: 207-211. |
26 | Yang H Z, Li Y Y, Yang Y, et al. Effective thermal conductivity of high porosity open-cell metal foams [J]. International Journal of Heat and Mass Transfer, 2020, 147: 118974. |
27 | Chan K C, Tso C Y, Hussain A, et al. A theoretical model for the effective thermal conductivity of graphene coated metal foams [J]. Applied Thermal Engineering, 2019, 161: 114112. |
28 | Yang X H, Kuang J J, Lu T J, et al. A simplistic analytical unit cell based model for the effective thermal conductivity of high porosity open-cell metal foams [J]. Journal of Physics D: Applied Physics, 2013, 46(25): 255302. |
29 | 杨肖虎, 邝九杰, 白佳希, 等. 高孔隙率通孔金属泡沫有效导热系数的试验和理论研究[J]. 西安交通大学学报, 2014, 48(4): 79-84. |
Yang X H, Kuang J J, Bai J X, et al. Experimental and analytic investigations for effective thermal conductivity in high porosity metallic foams [J]. Journal of Xi'an Jiaotong University, 2014, 48(4): 79-84. | |
30 | Yang X H, Bai J X, Yan H B, et al. An analytical unit cell model for the effective thermal conductivity of high porosity open-cell metal foams [J]. Transport in Porous Media, 2014, 102(3): 403-426. |
31 | Kanaun S, Tkachenko O. Effective conductive properties of open-cell foams [J]. International Journal of Engineering Science, 2008, 46(6): 551-571. |
32 | Yao Y P, Wu H Y, Liu Z Y. A new prediction model for the effective thermal conductivity of high porosity open-cell metal foams [J]. International Journal of Thermal Sciences, 2015, 97: 56-67. |
33 | Kumar P, Topin F, Vicente J. Determination of effective thermal conductivity from geometrical properties: application to open cell foams [J]. International Journal of Thermal Sciences, 2014, 81: 13-28. |
34 | Kumar P, Topin F. Simultaneous determination of intrinsic solid phase conductivity and effective thermal conductivity of Kelvin like foams [J]. Applied Thermal Engineering, 2014, 71(1): 536-547. |
35 | 李宇, 沈伟, 赵鹏, 等. 泡沫铜有效热导率的有限元研究[J]. 粉末冶金工业, 2018, 28(2): 39-44. |
Li Y, Shen W, Zhao P, et al. Finite element analysis for the effective thermal conductivity of copper foam [J]. Powder Metallurgy Industry, 2018, 28(2): 39-44. | |
36 | Shen H M, Ye Q, Meng G X. The simplified analytical models for evaluating the heat transfer performance of high-porosity metal foams [J]. International Journal of Thermophysics, 2018, 39(7): 1-14. |
37 | Ranut P. On the effective thermal conductivity of aluminum metal foams: review and improvement of the available empirical and analytical models [J]. Applied Thermal Engineering, 2016, 101: 496-524. |
38 | Dyga R, Witczak S. Investigation of effective thermal conductivity aluminum foams [J]. Procedia Engineering, 2012, 42: 1088-1099. |
39 | Xiao X, Zhang P, Li M. Effective thermal conductivity of open-cell metal foams impregnated with pure paraffin for latent heat storage [J]. International Journal of Thermal Sciences, 2014, 81: 94-105. |
40 | Coquard R, Baillis D. Numerical investigation of conductive heat transfer in high-porosity foams [J]. Acta Materialia, 2009, 57(18): 5466-5479. |
41 | 邱伟国, 陈宝明, 云和明, 等. 多孔介质X-CT图像的三维重建[J]. 渗流力学进展, 2014, 4(4): 59-64. |
Qiu W G, Chen B M, Yun H M, et al. Three dimensional reconstruction of porous media X-CT image [J]. Advances in Porous Flow, 2014, 4(4): 59-64. | |
42 | 郭照立, 郑楚光. 格子Boltzmann方法的原理及应用[M]. 北京: 科学出版社, 2009. |
Guo Z L, Zheng C G. Theory and Applications of Lattice Boltzmann Method [M]. Beijing: Science Press, 2009. | |
43 | 何雅玲, 王勇, 李庆. 格子Boltzmann方法的理论及应用[M]. 北京: 科学出版社, 2009. |
He Y L, Wang Y, Li Q. Lattice Boltzmann Method: Theory and Applications [M]. Beijing: Science Press, 2009. | |
44 | Qian J Y, Li Q, Yu K, et al. A novel method to determine effective thermal conductivity of porous materials [J]. Science in China Series E: Technological Sciences, 2004, 47(6): 716-724. |
45 | Wang M R, Wang J K, Pan N, et al. Mesoscopic predictions of the effective thermal conductivity for microscale random porous media [J]. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 2007, 75(3Pt 2): 036702. |
46 | Wang J K, Wang M R, Li Z X. A lattice Boltzmann algorithm for fluid-solid conjugate heat transfer [J]. International Journal of Thermal Sciences, 2007, 46(3): 228-234. |
47 | Wang M R, Pan N. Modeling and prediction of the effective thermal conductivity of random open-cell porous foams [J]. International Journal of Heat and Mass Transfer, 2008, 51(5/6): 1325-1331. |
48 | Wang M R, Wang J K, Pan N, et al. Three-dimensional effect on the effective thermal conductivity of porous media [J]. Journal of Physics D: Applied Physics, 2007, 40(1): 260-265. |
49 | Chiappini D. Numerical simulation of natural convection in open-cells metal foams [J]. International Journal of Heat and Mass Transfer, 2018, 117: 527-537. |
50 | 陈振乾, 顾明伟, 施明恒. 泡沫金属内石蜡相变凝固的数值模拟[J]. 热科学与技术, 2010, 9(2): 106-111. |
Chen Z Q, Gu M W, Shi M H. Numerical simulation on phase change heat transfer of paraffin in metal foams [J]. Journal of Thermal Science and Technology, 2010, 9(2): 106-111. | |
51 | 杲东彦, 陈振乾. 格子Boltzmann方法模拟泡沫金属内相变材料热传导融化传热过程[J]. 热科学与技术, 2011, 10(1): 6-11. |
Gao D Y, Chen Z Q. Lattice Boltzmann simulation of conduction melting of phase change materials in metal foams [J]. Journal of Thermal Science and Technology, 2011, 10(1): 6-11. | |
52 | 杲东彦, 陈振乾, 孙东科. 泡沫金属内相变材料融化的格子Boltzmann方法孔隙尺度模拟研究[J]. 工程热物理学报, 2016, 37(2): 385-389. |
Gao D Y, Chen Z Q, Sun D K. Lattice boltzmann simulation of melting of phase change materials in metal foams at pore scale [J]. Journal of Engineering Thermophysics, 2016, 37(2): 385-389. | |
53 | 宋林泉, 陈宝明, 郜凯凯. 基于LBM的多孔骨架热物性对固液相变的影响研究[J]. 山东建筑大学学报, 2017, 32(4): 356-364. |
Song L Q, Chen B M, Gao K K. Research on the influence of solid liquid phase change in porous skeleton media based on LBM method [J]. Journal of Shandong Jianzhu University, 2017, 32(4): 356-364. | |
54 | 张艳勇, 陈宝明, 李佳阳. 基于LBM研究骨架对相变材料融化蓄热的影响[J]. 山东建筑大学学报, 2020, 35(2): 53-61, 75. |
Zhang Y Y, Chen B M, Li J Y. Study on the influence of skeleton on the melting and heat storage of phase change materials based on LBM [J]. Journal of Shandong Jianzhu University, 2020, 35(2): 53-61, 75. | |
55 | 黄丰. 多孔介质模型的三维重构研究[D]. 合肥: 中国科学技术大学, 2007. |
Huang F. Three-dimensional reconstruction and simulation of porous media [D]. Hefei: University of Science and Technology of China, 2007. | |
56 | 赫尔曼. 由投影重建图象: CT的理论基础[M]. 严洪范, 译. 北京: 科学出版社, 1985. |
Herman G T. Reconstructing Images from Projections: the Theoretical Basis of CT [M]. Yan H F, trans. Beijing: Science Press, 1985. | |
57 | 段春梅. 基于多视图的三维结构重建[M]. 北京: 电子工业出版社, 2017. |
Duan C M. Three-dimensional Structure Reconstruction Based on Multi-view [M]. Beijing: Publishing House of Electronics Industry, 2017. | |
58 | 李佳阳. 基于真实多孔介质三维重建的双扩散自然对流模拟研究[D]. 济南: 山东建筑大学, 2020. |
Li J Y. Simulation of double diffusion natural convection based on three-dimensional reconstruction of real porous media [D]. Jinan: Shandong Jianzhu University, 2020. | |
59 | Amani Y, Takahashi A, Chantrenne P, et al. Thermal conductivity of highly porous metal foams: experimental and image based finite element analysis [J]. International Journal of Heat and Mass Transfer, 2018, 122: 1-10. |
60 | Gerbaux O, Buyens F, Mourzenko V V, et al. Transport properties of real metallic foams [J]. Journal of Colloid and Interface Science, 2010, 342(1): 155-165. |
61 | 王书华. 基于LBM的泡沫金属内纳米流体气液两相传热机理研究[D]. 镇江: 江苏科技大学, 2017. |
Wang S H. Study of heat transfer mechanism of gas-liquid two- phase in foam metal based on LBM [D]. Zhenjiang: Jiangsu University of Science and Technology, 2017. | |
62 | Iasiello M, Bianco N, Chiu W K S, et al. Thermal conduction in open-cell metal foams: anisotropy and representative volume element [J]. International Journal of Thermal Sciences, 2019, 137: 399-409. |
63 | Jang W Y, Kraynik A M, Kyriakides S. On the microstructure of open-cell foams and its effect on elastic properties [J]. International Journal of Solids and Structures, 2008, 45(7/8): 1845-1875. |
64 | Kumar P, Topin F. Impact of anisotropy on geometrical and thermal conductivity of metallic foam structures [J]. Journal of Porous Media, 2015, 18(10): 949-970. |
65 | Bodla K K, Murthy J Y, Garimella S V. Microtomography-based simulation of transport through open-cell metal foams [J]. Numerical Heat Transfer, Part A: Applications, 2010, 58(7): 527-544. |
66 | Bodla K K, Murthy J Y, Garimella S V. Resistance network-based thermal conductivity model for metal foams [J]. Computational Materials Science, 2010, 50(2): 622-632. |
67 | Ranut P, Nobile E, Mancini L. High resolution microtomography-based CFD simulation of flow and heat transfer in aluminum metal foams [J]. Applied Thermal Engineering, 2014, 69(1/2): 230-240. |
68 | Ranut P, Nobile E, Mancini L. High resolution X-ray microtomography-based CFD simulation for the characterization of flow permeability and effective thermal conductivity of aluminum metal foams [J]. Experimental Thermal and Fluid Science, 2015, 67: 30-36. |
69 | Zafari M, Panjepour M, Emami M D, et al. Microtomography-based numerical simulation of fluid flow and heat transfer in open cell metal foams [J]. Applied Thermal Engineering, 2015, 80: 347-354. |
70 | Mendes M A A, Ray S, Trimis D. A simple and efficient method for the evaluation of effective thermal conductivity of open-cell foam-like structures [J]. International Journal of Heat and Mass Transfer, 2013, 66: 412-422. |
71 | Mendes M A A, Ray S, Trimis D. An improved model for the effective thermal conductivity of open-cell porous foams [J]. International Journal of Heat and Mass Transfer, 2014, 75: 224-230. |
72 | Wulf R, Mendes M A A, Skibina V, et al. Experimental and numerical determination of effective thermal conductivity of open cell FeCrAl-alloy metal foams [J]. International Journal of Thermal Sciences, 2014, 86: 95-103. |
[1] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[2] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[3] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[4] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[5] | Meibo XING, Zhongtian ZHANG, Dongliang JING, Hongfa ZHANG. Enhanced phase change energy storage/release properties by combining porous materials and water-based carbon nanotube under magnetic regulation [J]. CIESC Journal, 2023, 74(7): 3093-3102. |
[6] | Yuying GUO, Jiaqiang JING, Wanni HUANG, Ping ZHANG, Jie SUN, Yu ZHU, Junxuan FENG, Hongjiang LU. Water-lubricated drag reduction and pressure drop model modification for heavy oil pipeline [J]. CIESC Journal, 2023, 74(7): 2898-2907. |
[7] | Yuan YU, Weiwei CHEN, Junjie FU, Jiaxiang LIU, Zhiwei JIAO. Study and prediction of flow field in the annular region of geometrically similar turbo air classifier [J]. CIESC Journal, 2023, 74(6): 2363-2373. |
[8] | Yuanchao LIU, Xuhao JIANG, Ke SHAO, Yifan XU, Jianbin ZHONG, Zhuan LI. Influence of geometrical dimensions and defects on the thermal transport properties of graphyne nanoribbons [J]. CIESC Journal, 2023, 74(6): 2708-2716. |
[9] | Zhen LI, Bo ZHANG, Liwei WANG. Development and properties of PEG-EG solid-solid phase change materials [J]. CIESC Journal, 2023, 74(6): 2680-2688. |
[10] | Yanhui LI, Shaoming DING, Zhouyang BAI, Yinan ZHANG, Zhihong YU, Limei XING, Pengfei GAO, Yongzhen WANG. Corrosion micro-nano scale kinetics model development and application in non-conventional supercritical boilers [J]. CIESC Journal, 2023, 74(6): 2436-2446. |
[11] | Xiaoyu JIA, Jian YANG, Bo WANG, Mei LIN, Qiuwang WANG. Pore scale numerical simulations for wicking performance of metallic woven mesh [J]. CIESC Journal, 2023, 74(5): 1928-1938. |
[12] | Huizhu YANG, Jingling LAN, Yue YANG, Jialin LIANG, Chuanwen LYU, Yonggang ZHU. Experimental study on thermal performance of high power flat heat pipe [J]. CIESC Journal, 2023, 74(4): 1561-1569. |
[13] | Xiangning HU, Yuanbo YIN, Chen YUAN, Yun SHI, Cuiwei LIU, Qihui HU, Wen YANG, Yuxing LI. Experimental study on visualization of refined oil migration in soil [J]. CIESC Journal, 2023, 74(4): 1827-1835. |
[14] | Zhiguang QIAN, Yue FAN, Shixue WANG, Like YUE, Jinshan WANG, Yu ZHU. Effect of purging conditions on the impedance relaxation phenomenon and low temperature start-up of PEMFC [J]. CIESC Journal, 2023, 74(3): 1286-1293. |
[15] | Shuai WANG, Fukai YANG, Xinyu XU. Preparation and characterization of flame retardant bio-based polyols polyurethane foam [J]. CIESC Journal, 2023, 74(3): 1399-1408. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||