CIESC Journal ›› 2023, Vol. 74 ›› Issue (5): 1928-1938.DOI: 10.11949/0438-1157.20230238
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Xiaoyu JIA1(
), Jian YANG2, Bo WANG2, Mei LIN1(
), Qiuwang WANG2
Received:2023-03-14
Revised:2023-04-25
Online:2023-06-29
Published:2023-05-05
Contact:
Mei LIN
通讯作者:
林梅
作者简介:贾晓宇(1997—),男,博士研究生,1393317957@qq.com
基金资助:CLC Number:
Xiaoyu JIA, Jian YANG, Bo WANG, Mei LIN, Qiuwang WANG. Pore scale numerical simulations for wicking performance of metallic woven mesh[J]. CIESC Journal, 2023, 74(5): 1928-1938.
贾晓宇, 杨剑, 王博, 林梅, 王秋旺. 金属丝网毛细特性的孔隙尺度数值分析[J]. 化工学报, 2023, 74(5): 1928-1938.
Add to citation manager EndNote|Ris|BibTeX
| 孔隙参数 | Ⅰ型 | Ⅱ型 | Ⅲ型 | Ⅳ型 |
|---|---|---|---|---|
| 丝径d /μm | 67.0 | 50.4 | 38.8 | 38.0 |
| 网孔径L /μm | 304 | 177 | 109 | 77.0 |
| 计算孔隙率ε | 0.855 | 0.820 | 0.784 | 0.722 |
| 实验孔隙率ε | 0.801 | 0.772 | 0.749 | 0.727 |
| 计算比表面积α/μm-1 | 0.00866 | 0.0143 | 0.0223 | 0.0293 |
| 计算开口面积比β | 0.671 | 0.606 | 0.543 | 0.448 |
| 水力孔径dp/μm | 73.5 | 50.9 | 35.7 | 29.7 |
Table 1 Geometric parameters and pore characteristics of woven mesh with different mesh numbers
| 孔隙参数 | Ⅰ型 | Ⅱ型 | Ⅲ型 | Ⅳ型 |
|---|---|---|---|---|
| 丝径d /μm | 67.0 | 50.4 | 38.8 | 38.0 |
| 网孔径L /μm | 304 | 177 | 109 | 77.0 |
| 计算孔隙率ε | 0.855 | 0.820 | 0.784 | 0.722 |
| 实验孔隙率ε | 0.801 | 0.772 | 0.749 | 0.727 |
| 计算比表面积α/μm-1 | 0.00866 | 0.0143 | 0.0223 | 0.0293 |
| 计算开口面积比β | 0.671 | 0.606 | 0.543 | 0.448 |
| 水力孔径dp/μm | 73.5 | 50.9 | 35.7 | 29.7 |
| 接触形式 | 网格 | 孔隙率ε | 比表面积α/μm-1 | 单位压降/(Pa/m) | 出口速度/(m/s) | 渗透率/(10-11m2) |
|---|---|---|---|---|---|---|
| 间隙型 | 268821 | 0.728 | 0.0287 | 130763 | 0.00860 | 6.58 |
| 739181 | 131355 | 0.00860 | 6.55 | |||
| 3296537 | 131671 | 0.00859 | 6.53 | |||
| 接触型 | 364729 | 0.725 | 0.0289 | 134175 | 0.00859 | 6.40 |
| 864167 | 134611 | 0.00859 | 6.38 | |||
| 1722949 | 134771 | 0.00858 | 6.37 | |||
| 重叠型 | 422303 | 0.723 | 0.0289 | 137610 | 0.00858 | 6.23 |
| 988937 | 141090 | 0.00858 | 6.08 | |||
| 3574513 | 144686 | 0.00857 | 5.93 |
Table 2 Pore parameters and flow characteristics of different contact forms
| 接触形式 | 网格 | 孔隙率ε | 比表面积α/μm-1 | 单位压降/(Pa/m) | 出口速度/(m/s) | 渗透率/(10-11m2) |
|---|---|---|---|---|---|---|
| 间隙型 | 268821 | 0.728 | 0.0287 | 130763 | 0.00860 | 6.58 |
| 739181 | 131355 | 0.00860 | 6.55 | |||
| 3296537 | 131671 | 0.00859 | 6.53 | |||
| 接触型 | 364729 | 0.725 | 0.0289 | 134175 | 0.00859 | 6.40 |
| 864167 | 134611 | 0.00859 | 6.38 | |||
| 1722949 | 134771 | 0.00858 | 6.37 | |||
| 重叠型 | 422303 | 0.723 | 0.0289 | 137610 | 0.00858 | 6.23 |
| 988937 | 141090 | 0.00858 | 6.08 | |||
| 3574513 | 144686 | 0.00857 | 5.93 |
| 规格 | 丝径d/μm | 网径L/μm | 孔隙率ε | 比表面积α/μm-1 | 渗透率K/(10-10m2) | Darcy渗透率K1/(10-10m2) | 非Darcy渗透率K2/(10-5 m) |
|---|---|---|---|---|---|---|---|
| Ⅳ型 | 38.0 | 77.0 | 0.728 | 0.0288 | 0.654 | 8.16 | 3.56 |
| Ⅲ型 | 38.8 | 109 | 0.788 | 0.0219 | 1.16 | 1.38 | 6.06 |
| Ⅱ型 | 50.4 | 172 | 0.820 | 0.0143 | 2.63 | 3.07 | 10.8 |
| Ⅰ型 | 67.1 | 304 | 0.857 | 0.00854 | 6.88 | 7.82 | 21.7 |
Table 3 Pore parameters and permeability of woven mesh with different size
| 规格 | 丝径d/μm | 网径L/μm | 孔隙率ε | 比表面积α/μm-1 | 渗透率K/(10-10m2) | Darcy渗透率K1/(10-10m2) | 非Darcy渗透率K2/(10-5 m) |
|---|---|---|---|---|---|---|---|
| Ⅳ型 | 38.0 | 77.0 | 0.728 | 0.0288 | 0.654 | 8.16 | 3.56 |
| Ⅲ型 | 38.8 | 109 | 0.788 | 0.0219 | 1.16 | 1.38 | 6.06 |
| Ⅱ型 | 50.4 | 172 | 0.820 | 0.0143 | 2.63 | 3.07 | 10.8 |
| Ⅰ型 | 67.1 | 304 | 0.857 | 0.00854 | 6.88 | 7.82 | 21.7 |
| 项目 | 丝径d/μm | 网径L/μm | 孔隙率ε | 比表面积α/μm-1 | 单位压降/ (Pa/m) | 出口流速/ (m/s) | 渗透率/ (10-10m2) | 渗透Reynolds数ReK | 几何因子N |
|---|---|---|---|---|---|---|---|---|---|
| 验证1 | 30.0 | 50.0 | 0.685 | 0.0421 | 406856 | 0.0114 | 0.281 | 0.0726 | 100 |
| 验证2 | 38.0 | 50.0 | 0.625 | 0.0395 | 416005 | 0.0108 | 0.258 | 0.0696 | 100 |
Table 4 Mesh structure and pore parameters for verification
| 项目 | 丝径d/μm | 网径L/μm | 孔隙率ε | 比表面积α/μm-1 | 单位压降/ (Pa/m) | 出口流速/ (m/s) | 渗透率/ (10-10m2) | 渗透Reynolds数ReK | 几何因子N |
|---|---|---|---|---|---|---|---|---|---|
| 验证1 | 30.0 | 50.0 | 0.685 | 0.0421 | 406856 | 0.0114 | 0.281 | 0.0726 | 100 |
| 验证2 | 38.0 | 50.0 | 0.625 | 0.0395 | 416005 | 0.0108 | 0.258 | 0.0696 | 100 |
| 1 | 马军, 王建忠, 吴琛, 等. 金属丝网多孔材料的应用研究进展[J]. 粉末冶金技术, 2023, DOI: 10.19591/j.cnki.cn11-1974/tf.2021090021 . |
| Ma J, Wang J Z, Wu C, et al. Progress in application of metal wire mesh porous materials[J]. Powder Metallurgy Technology, 2023, DOI: 10.19591/j.cnki.cn11-1974/tf.2021090021 . | |
| 2 | Ma J D, Luo X, Li H W, et al. An experimental investigation on transpiration cooling based on the double-laminated sintered woven wire mesh structures[J]. Journal of Thermal Science and Engineering Applications, 2016, 8(3): 031005. |
| 3 | Fries N, Odic K, Conrath M, et al. The effect of evaporation on the wicking of liquids into a metallic weave[J]. Journal of Colloid and Interface Science, 2008, 321(1): 118-129. |
| 4 | Liu Y, Luo Y, Chu G W, et al. 3D numerical simulation of a rotating packed bed with structured stainless steel wire mesh packing[J]. Chemical Engineering Science, 2017, 170: 365-377. |
| 5 | Costa S C, Barrutia H, Esnaola J A, et al. Numerical study of the heat transfer in wound woven wire matrix of a stirling regenerator[J]. Energy Conversion and Management, 2014, 79: 255-264. |
| 6 | Thakur N S, Saini J S, Solanki S C. Heat transfer and friction factor correlations for packed bed solar air heater for a low porosity system[J]. Solar Energy, 2003, 74(4): 319-329. |
| 7 | Peksen M. Numerical thermomechanical modelling of solid oxide fuel cells[J]. Progress in Energy and Combustion Science, 2015, 48: 1-20. |
| 8 | Darr S, Hartwig J. Optimal liquid acquisition device screen weave for a liquid hydrogen fuel depot[J]. International Journal of Hydrogen Energy, 2014, 39(9): 4356-4366. |
| 9 | Zhao Z H, Peles Y, Jensen M K. Properties of plain weave metallic wire mesh screens[J]. International Journal of Heat and Mass Transfer, 2013, 57(2): 690-697. |
| 10 | Zhang Q, Jiang W C, Zhang Y T, et al. Effective elastic constants of wire mesh material studied by theoretical and finite element methods[J]. Composite Structures, 2018, 184: 474-483. |
| 11 | Kołodziej A, Jaroszyński M, Janus B, et al. An experimental study of the pressure drop in fluid flows through wire gauzes[J]. Chemical Engineering Communications, 2009, 196(8): 932-949. |
| 12 | Kołodziej A, Łojewska J, Jaroszyński M, et al. Heat transfer and flow resistance for stacked wire gauzes: experiments and modelling[J]. International Journal of Heat and Fluid Flow, 2012, 33(1): 101-108. |
| 13 | Bussière W, Rochette D, Clain S, et al. Pressure drop measurements for woven metal mesh screens used in electrical safety switchgears[J]. International Journal of Heat and Fluid Flow, 2017, 65: 60-72. |
| 14 | Azizi F. On the pressure drop of fluids through woven screen meshes[J]. Chemical Engineering Science, 2019, 207: 464-478. |
| 15 | Iwaniszyn M, Sindera K, Gancarczyk A, et al. Experimental and CFD investigation of heat transfer and flow resistance in woven wire gauzes[J]. Chemical Engineering and Processing - Process Intensification, 2021, 163: 108364. |
| 16 | Liu Y P, Xu G Q, Luo X, et al. An experimental investigation on fluid flow and heat transfer characteristics of sintered woven wire mesh structures[J]. Applied Thermal Engineering, 2015, 80: 118-126. |
| 17 | Yang G, Xu R, Wang Y, et al. Pore-scale numerical simulations of flow and convective heat transfer in a porous woven metal mesh[J]. Chemical Engineering Science, 2022, 256: 117696. |
| 18 | 徐计元, 邹勇, 程林. 烧结镍毛细芯的孔参数控制及其对抽吸性能的影响[J]. 化工学报, 2012, 63(2): 463-469. |
| Xu J Y, Zou Y, Cheng L. Control of pore parameters and influence on capillary pumping performance of sintered nickel wicks[J]. CIESC Journal, 2012, 63(2): 463-469. | |
| 19 | 崔可航, 辛公明, 程林, 等. 环路热管毛细芯有效导热系数的实验研究[J]. 工程热物理学报, 2010, 31(9): 1543-1546. |
| Cui K H, Xin G M, Cheng L, et al. Effective thermal conductivity of loop heat pipe wicks[J]. Journal of Engineering Thermophysics, 2010, 31(9): 1543-1546. | |
| 20 | 汪冬冬, 刘朋杰, 楚化强, 等. 基于泡沫金属的复合毛细芯的物性测试[J]. 过程工程学报, 2020, 20(7): 852-859. |
| Wang D D, Liu P J, Chu H Q, et al. Physical properties test of a composite porous wick based on foam metal[J]. The Chinese Journal of Process Engineering, 2020, 20(7): 852-859. | |
| 21 | 孙琦, 陈曦, 谢荣建, 等. 环路热管中Ti64ELI毛细芯传热能力的实验研究[J]. 化工学报, 2018, 69(4): 1391-1397. |
| Sun Q, Chen X, Xie R J, et al. Experimental study on heat transfer capability of Ti64ELI capillary wick in loop heat pipe[J]. CIESC Journal, 2018, 69(4): 1391-1397. | |
| 22 | 胡卓焕, 袁成伟, 许佳寅, 等. 金属3D打印复合毛细芯孔径配比对环路热管特性影响[J]. 化工进展, 2022, 41(4): 1715-1724. |
| Hu Z H, Yuan C W, Xu J Y, et al. Effect of metal 3D-printed composite capillary wick on loop heat pipe characteristics[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1715-1724. | |
| 23 | Ma Y, Li Y Z, Wang L, et al. Investigation on isothermal wicking performance within metallic weaves for screen channel liquid acquisition devices (LADs)[J]. International Journal of Heat and Mass Transfer, 2019, 135: 392-402. |
| 24 | Peng Y B, Xu G Q, Luo X, et al. Experimental investigation on the transpiration cooling characteristics of sintered wire mesh in plain weave[J]. Micromachines, 2022, 13(3): 450. |
| 25 | Davit Y, Debenest G, Quintard M, et al. Multiple-scale analysis of transport in porous media with biofilms[C]//AIP Conference Proceedings. Montecatini (Italy), AIP, 2010. |
| 26 | Avila-Marin A L, Caliot C, Flamant G, et al. Numerical determination of the heat transfer coefficient for volumetric air receivers with wire meshes[J]. Solar Energy, 2018, 162: 317-329. |
| 27 | Kaviany M. Principles of Heat Transfer in Porous Media[M]. Berlin, German: Springer-Verlag, 1991. |
| 28 | Auset M, Keller A A. Pore-scale processes that control dispersion of colloids in saturated porous media[J]. Water Resources Research, 2004, 40(3): W03503. |
| 29 | Mondal S, Wu C H, Sharma M M, et al. Characterizing, designing, and selecting metal mesh screens for standalone-screen applications[J]. SPE Drilling & Completion, 2016, 31(2): 85-94. |
| 30 | Holley B, Faghri A. Permeability and effective pore radius measurements for heat pipe and fuel cell applications[J]. Applied Thermal Engineering, 2006, 26(4): 448-462. |
| 31 | Peterson G. An Introduction to Heat Pipes: Modeling, Testing, and Applications[M]. New Jersey: Wiley, 1994. |
| 32 | Paiva K V, Mantelli M B H. Wire-plate and sintered hybrid heat pipes: model and experiments[J]. International Journal of Thermal Sciences, 2015, 93: 36-51. |
| 33 | Carbajal G, Sobhan C B, Peterson G P. Dimensionless governing equations for vapor and liquid flow analysis of heat pipes[J]. Journal of Thermophysics and Heat Transfer, 2006, 20(1): 140-144. |
| 34 | Eisfeld B, Schnitzlein K. The influence of confining walls on the pressure drop in packed beds[J]. Chemical Engineering Science, 2001, 56(14): 4321-4329. |
| [1] | Huizhu YANG, Jingling LAN, Yue YANG, Jialin LIANG, Chuanwen LYU, Yonggang ZHU. Experimental study on thermal performance of high power flat heat pipe [J]. CIESC Journal, 2023, 74(4): 1561-1569. |
| [2] | Xiangning HU, Yuanbo YIN, Chen YUAN, Yun SHI, Cuiwei LIU, Qihui HU, Wen YANG, Yuxing LI. Experimental study on visualization of refined oil migration in soil [J]. CIESC Journal, 2023, 74(4): 1827-1835. |
| [3] | Zhiguang QIAN, Yue FAN, Shixue WANG, Like YUE, Jinshan WANG, Yu ZHU. Effect of purging conditions on the impedance relaxation phenomenon and low temperature start-up of PEMFC [J]. CIESC Journal, 2023, 74(3): 1286-1293. |
| [4] | Weizheng ZHANG, Jijun ZHAO, Xuezhong MA, Qixuan ZHANG, Yixiang PANG, Juntao ZHANG. Analysis of turbulence effect on face groove cooling performance of high-speed mechanical seals [J]. CIESC Journal, 2023, 74(3): 1228-1238. |
| [5] | Jiaming WANG, Xuehua RUAN, Gaohong HE. Research progress of membrane separation materials for different industrial CO2-containing mixtures [J]. CIESC Journal, 2022, 73(8): 3417-3432. |
| [6] | Guang YANG, Xin CHENG, Zheng WANG, Ye WANG, Liangjun ZHANG, Jingyi WU. Analytical prediction model of permeability for rarefied gas flow in porous structures with micro or nanopores [J]. CIESC Journal, 2022, 73(7): 2895-2901. |
| [7] | Pei WANG, Rongkuo WEI. Thermal-mass nonequilibrium model for water splitting hydrogen production by solar thermochemical cycle of porous cerium oxide [J]. CIESC Journal, 2022, 73(7): 2885-2894. |
| [8] | Yulun ZHANG, Changkun CHEN, Peng LEI. Experimental study on combined burning characteristics of soaked porous media sand bed under different combustible liquid layer heights [J]. CIESC Journal, 2022, 73(4): 1826-1833. |
| [9] | Wensong WANG, Yingying YANG, Zhoulin CHEN, Qingyu YANG, Shuaihua LI, Weidong WU. Evolution mechanism of water freezing phase interface in porous media at mesoscale [J]. CIESC Journal, 2022, 73(12): 5343-5354. |
| [10] | Xiaole HUANG, Fu YANG, Lei HAN, Xing NING, Ruiyu LI, Lingxiao DONG, Husheng CAO, Lei DENG, Defu CHE. 3D characterization of pore structure and seepage simulation of tar-rich coal (long flame coal) [J]. CIESC Journal, 2022, 73(11): 5078-5087. |
| [11] | Zhimin LIN, Chongzhao WANG, Guozhi QIANG, Shushan LIU, Liangbi WANG. Analysis of flow and heat transfer characteristics of lubricating oil in circular tube with coaxial crossed vortex generators [J]. CIESC Journal, 2022, 73(11): 4957-4973. |
| [12] | LIANG Heng, LIU Yicai, WANG Qianxu, ZHAO Xiangle, LI Zheng. Research progress of effective thermal conductivity of open-cell foam metal composites [J]. CIESC Journal, 2021, 72(S1): 7-20. |
| [13] | Hao ZHANG, Jiao WANG, Ting MA, Xinyi LI, Jun LIU, Qiuwang WANG. Experimental investigation on phase change heat transfer of paraffin composited with porous graphite under supergravity [J]. CIESC Journal, 2021, 72(9): 4523-4530. |
| [14] | Qi LI, Rongming ZHANG, Pengfei HU. Influence of interfacial convective heat transfer coefficient on heat transfer in partially filled porous channel under LTNE condition [J]. CIESC Journal, 2021, 72(8): 4121-4133. |
| [15] | TIAN Yaling, ZHANG Hainan, XU Hongbo, TIAN Changqing. Experimental study on compact plate loop heat pipe [J]. CIESC Journal, 2021, 72(6): 3288-3295. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||