1 |
Ali A H H, Schwerdt P. Characteristics of the membrane utilized in a compact absorber for lithium bromide-water absorption chillers[J]. International Journal of Refrigeration, 2009, 32(8): 1886-1896.
|
2 |
Wang R Z, Yu X, Ge T S, et al. The present and future of residential refrigeration, power generation and energy storage[J]. Applied Thermal Engineering, 2013, 53(2): 256-270.
|
3 |
Iyoki S, Tanaka K, Uemura T. Theoretical performance analysis of absorption refrigerating machine, absorption heat pump and absorption heat transformer using alcohol as working medium[J]. International Journal of Refrigeration, 1994, 17(3): 180-190.
|
4 |
Donnellan P, Cronin K, Byrne E. Recycling waste heat energy using vapour absorption heat transformers: a review[J]. Renewable&Sustainable Energy Reviews, 2015, 42: 1290-1304.
|
5 |
Park Y, Kim J S, Lee H, et al. Density, vapor pressure, solubility, and viscosity for water + lithium bromide + lithium nitrate + 1, 3-propanediol[J]. Journal of Chemical & Engineering Data, 1997, 42(1): 145-148.
|
6 |
Coronas A, Vallés M, Chaudhari S K, et al. Absorption heat pump with the TFE-TEGDME and TFE-H2O-TEGDME systems[J]. Applied Thermal Engineering, 1996, 16(4): 335-345.
|
7 |
Papadopoulos A I, Stijepovic M, Linke P. On the systematic design and selection of optimal working fluids for organic Rankine cycles[J]. Applied Thermal Engineering, 2010, 30(6/7): 760-769.
|
8 |
Louaer I, Meniai A H, Larkeche O, et al. Computer-aided design and test of new refrigerants for anabsorption cycle using group contribution methods[J]. Desalination, 2007, 206(1/2/3): 620-632.
|
9 |
Dong Y, Zhu R, Guo Y, et al. A united chemical thermodynamic model: COSMO-UNIFAC[J]. Industrial & Engineering Chemistry Research, 2018, 57(46): 15954-15958.
|
10 |
Khetib Y, Larkeche O, Meniai A H, et al. Group contribution concept for computer-aided design of working fluids for refrigeration machines[J]. Chemical Engineering & Technology, 2013, 36(11): 1924-1934.
|
11 |
Liu Q, Zhang L, Liu L, et al. OptCAMD: an optimization-based framework and tool for molecular and mixture product design[J]. Computers and Chemical Engineering, 2019, 124: 285-301.
|
12 |
Lemmon E W, Huber M L, Mcinlden M O. NIST Standard Reference Database 23: Reference fluid thermodynamic and transport properties-REFPROP, Version9.1[DB]. Gaithersburg: National Institute of Standards and Technology, 2013.
|
13 |
Hukkerikar A S. Development of pure component property models for chemical product-process design and analysis[D]. Denmark: Technical University of Denmark, 2013.
|
14 |
Mirza N R, Nicholas N J, Wu Y, et al. Estimation of normal boiling temperatures, critical properties, and acentric factors of deep eutectic solvents[J]. Journal of Chemical & Engineering Data, 2015, 60(6): 1844-1854.
|
15 |
Azadfar R, Shaabanzadeh M, Hashemi-Moghaddam H, et al. A new simple model to calculate the heat capacity of pure ionic liquids[J]. Physical Chemistry Research, 2020, 8(1): 139-154.
|
16 |
Oster K, Jacquemin J, Hardacre C, et al. Further development of the predictive models for physical properties of pure ionic liquids: thermal conductivity and heat capacity[J]. The Journal of Chemical Thermodynamics, 2018, 118: 1-15.
|
17 |
Chen W, Hsieh C M, Yang L, et al. A critical evaluation on the performance of COSMO-SAC models for vapor-liquid and liquid-liquid equilibrium predictions based on different quantum chemical calculations [J]. Industrial & Engineering Chemistry Research, 2016: 55(34): 9312-9322.
|
18 |
刘国强. 溴化锂第二类吸收式热泵的设计与仿真研究[D]. 天津: 天津大学, 2007.
|
|
Liu G Q. Design and simulation of the LiBr/H2O absorption heat transformer [D]. Tianjin: Tianjin University, 2007.
|
19 |
赵宗昌, 阎雪峰, 沙庆云, 等. 第二类LiBr-H2O吸收式热泵热力循环分析[J]. 节能技术, 2002, 20(6): 5-9.
|
|
Zhang Z C, Yan X F, Sha Q Y, et al. The simulation of thermodynamic cycle for the absorption heat transformer using lithium bromide and water as the working fluids[J]. Energy Conservation Technology, 2002, 20(6): 5-9.
|
20 |
Karunanithi A T, Achenie L E K, Gani R. A new decomposition-based computer-aided molecular/mixture design methodology for the design of optimal solvents and solvent mixtures [J]. Industrial& Engineering Chemistry Research, 2005, 44(13): 4785-4797.
|
21 |
Wang S, Sandler S I, Chen C C. Refinement of COSMO-SAC and the applications[J]. Industrial & Engineering Chemistry Research, 2007, 46(22): 7275-7288.
|
22 |
Hsieh C M, Sandler S I, Lin S. Improvements of COSMO-SAC for vapor–liquid and liquid-liquid equilibrium predictions[J]. Fluid Phase Equilibria, 2010, 297(1): 90-97.
|
23 |
Long Z, Luo Y, Li H, et al. Performance analysis of a diffusion absorption refrigeration cycle working with TFE-TEGDME mixture[J]. Energy & Buildings, 2013, 58: 86-92.
|
24 |
Boer D, Valles M, Coronas A. Performance of double effect absorption compression cycles for air-conditioning using methanol-TEGDME and TFE-TEGDME systems as working pairs[J]. International Journal of Refrigeration, 1998, 21(7): 542-555.
|
25 |
刘锋. 第二类吸收式热泵品位提升机理与系统集成研究[D]. 北京: 中国科学院工程热物理研究所, 2017.
|
|
Liu F. Study on mechanism of energy level upgrading in absorption heat transformer and system integration[D]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2017.
|