1 |
杨颖, 曲冬蕾, 李平, 等. 低浓度煤层气吸附浓缩技术研究与发展[J]. 化工学报, 2018, 69(11): 4518-4529.
|
|
Yang Y, Qu D L, Li P, et al. Research and development on enrichment of low concentration coal mine methane by adsorption technology[J]. CIESC Journal, 2018, 69(11): 4518-4529.
|
2 |
Nandanwar S U, Corbin D R, Shiflett M B. A review of porous adsorbents for the separation of nitrogen from natural gas[J]. Industrial & Engineering Chemistry Research, 2020, 59(30): 13355-13369.
|
3 |
Wang T, Lin E, Peng Y L, et al. Rational design and synthesis of ultramicroporous metal-organic frameworks for gas separation[J]. Coordination Chemistry Reviews, 2020, 423: 213485.
|
4 |
Saleman T L, Li G, Rufford T E, et al. Capture of low grade methane from nitrogen gas using dual-reflux pressure swing adsorption[J]. Chemical Engineering Journal, 2015, 281: 739-748.
|
5 |
韩治洋, 丁兆阳, 韩旸湲, 等. 真空变压吸附分离氮气甲烷的模拟与控制[J]. 化工学报, 2018, 69(2): 750-758.
|
|
Han Z Y, Ding Z Y, Han Y Y, et al. Simulation and control of vacuum pressure swing adsorption for N2/CH4 separation[J]. CIESC Journal, 2018, 69(2): 750-758.
|
6 |
尚华, 白洪灏, 刘佳奇, 等. CH4-N2在自支撑颗粒型Silicalite-1上的吸附分离及PSA模拟[J]. 化工学报, 2020, 71(5): 2088-2098.
|
|
Shang H, Bai H H, Liu J Q, et al. PSA simulation and adsorption separation of CH4-N2 by self-supporting pellets Silicalite-1 [J]. CIESC Journal, 2020, 71(5): 2088-2098.
|
7 |
Dąbrowski A. Adsorption—from theory to practice[J]. Advances in Colloid and Interface Science, 2001, 93(1/2/3): 135-224.
|
8 |
Benzigar M R, Talapaneni S N, Joseph S, et al. Recent advances in functionalized micro and mesoporous carbon materials: synthesis and applications[J]. Chemical Society Reviews, 2018, 47(8): 2680-2721.
|
9 |
Mohanty S, McCormick A V. Prospects for principles of size and shape selective separations using zeolites[J]. Chemical Engineering Journal, 1999, 74(1/2): 1-14.
|
10 |
Furukawa H, Cordova K E, O'Keeffe M, et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341(6149): 1230444.
|
11 |
Hendon C H, Rieth A J, Korzyński M D, et al. Grand challenges and future opportunities for metal-organic frameworks[J]. ACS Central Science, 2017, 3(6): 554-563.
|
12 |
胡江亮, 孙天军, 刘小伟, 等. CH4-N2在MOFs结构材料中的吸附分离性能[J]. 化工学报, 2015, 66(9): 3518-3528.
|
|
Hu J L, Sun T J, Liu X W, et al. Adsorption and separation of CH4-N2 with different structural MOFs[J]. CIESC Journal, 2015, 66(9): 3518-3528.
|
13 |
Du S J, Wu Y, Wang X J, et al. Facile synthesis of ultramicroporous carbon adsorbents with ultra-high CH4 uptake by in situ ionic activation[J]. AIChE Journal, 2020, 66(7): e16231.
|
14 |
Liu F, Zhang Y, Zhang P X, et al. Facile preparation of N and O-rich porous carbon from palm sheath for highly selective separation of CO2/CH4/N2 gas-mixture[J]. Chemical Engineering Journal, 2020, 399: 125812.
|
15 |
Chen F Q, Zhang Z G, Yang Q W, et al. Microporous carbon adsorbents prepared by activating reagent-free pyrolysis for upgrading low-quality natural gas[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(2): 977-985.
|
16 |
Zhang P X, Wang J, Fan W, et al. Ultramicroporous carbons with extremely narrow pore size distribution viain situ ionic activation for efficient gas-mixture separation[J]. Chemical Engineering Journal, 2019, 375: 121931.
|
17 |
Li Y, Xu R, Wang B B, et al. Enhanced N-doped porous carbon derived from KOH-activated waste wool: a promising material for selective adsorption of CO2/CH4 and CH4/N2[J]. Nanomaterials, 2019, 9(2): 266.
|
18 |
Akhtar F, Andersson L, Ogunwumi S, et al. Structuring adsorbents and catalysts by processing of porous powders[J]. Journal of the European Ceramic Society, 2014, 34(7): 1643-1666.
|
19 |
Lozano-Castelló D, Cazorla-Amorós D, Linares-Solano A, et al. Activated carbon monoliths for methane storage: influence of binder[J]. Carbon, 2002, 40(15): 2817-2825.
|
20 |
Shah B B, Kundu T, Zhao D. Mechanical properties of shaped metal-organic frameworks[J]. Topics in Current Chemistry, 2019, 377(5): 1-34.
|
21 |
Hao G P, Li W C, Qian D, et al. Structurally designed synthesis of mechanically stable poly(benzoxazine-co-resol)-based porous carbon monoliths and their application as high-performance CO2 capture sorbents[J]. Journal of the American Chemical Society, 2011, 133(29): 11378-11388.
|
22 |
Tang R L, Dai Q B, Liang W W, et al. Synthesis of novel particle rice-based carbon materials and its excellent CH4/N2 adsorption selectivity for methane enrichment from low-rank natural gas[J]. Chemical Engineering Journal, 2020, 384: 123388.
|
23 |
Mayo S L, Olafson B D, Goddard W A. DREIDING: a generic force field for molecular simulations[J]. The Journal of Physical Chemistry, 1990, 94(26): 8897-8909.
|
24 |
Rappe A K, Goddard W A. Charge equilibration for molecular dynamics simulations[J]. The Journal of Physical Chemistry, 1991, 95(8): 3358-3363.
|
25 |
Sircar S, Mohr R, Ristic C, et al. Isosteric heat of adsorption: theory and experiment[J]. The Journal of Physical Chemistry B, 1999, 103(31): 6539-6546.
|
26 |
叶振华. 化工吸附分离过程[M]. 北京: 中国石化出版社, 1992.
|
|
Ye Z H. Chemical Adsorption Separation Process [M]. Beijing: China Petrochemical Press, 1992.
|
27 |
陈敏玲, 王兴杰, 肖静, 等. 淀粉基多孔碳材料的制备及其吸附CO2/CH4性能[J]. 化工学报, 2018, 69(1): 455-463.
|
|
Chen M L, Wang X J, Xiao J, et al. Preparation of porous carbon material from starch and its performance for separation of CO2/CH4[J]. CIESC Journal, 2018, 69(1): 455-463.
|
28 |
Fan Y H, Wang Y, Kang D, et al. Oil-tea shell derived N-doped porous carbon for selective separation of CO2, CH4, and N2[J]. Science of Advanced Materials, 2019, 11(8): 1146-1155.
|
29 |
Guo Y, Hu J L, Liu X W, et al. Scalable solvent-free preparation of [Ni3(HCOO)6] frameworks for highly efficient separation of CH4 from N2[J]. Chemical Engineering Journal, 2017, 327: 564-572.
|
30 |
Kim T H, Kim S Y, Yoon T U, et al. Improved methane/nitrogen separation properties of zirconium-based metal-organic framework by incorporating highly polarizable bromine atoms[J]. Chemical Engineering Journal, 2020, 399: 125717.
|
31 |
Li L B, Yang J F, Li J M, et al. Separation of CO2/CH4 and CH4/N2 mixtures by M/DOBDC: a detailed dynamic comparison with MIL-100(Cr) and activated carbon[J]. Microporous and Mesoporous Materials, 2014, 198: 236-246.
|
32 |
Li L Y, Yang L F, Wang J W, et al. Highly efficient separation of methane from nitrogen on a squarate-based metal-organic framework[J]. AIChE Journal, 2018, 64(10): 3681-3689.
|
33 |
Niu Z, Cui X L, Pham T, et al. A metal-organic framework based methane nano-trap for the capture of coal-mine methane[J]. Angewandte Chemie International Edition, 2019, 58(30): 10138-10141.
|
34 |
Yuan B, Wu X F, Chen Y X, et al. Adsorptive separation studies of ethane-methane and methane-nitrogen systems using mesoporous carbon[J]. Journal of Colloid and Interface Science, 2013, 394: 445-450.
|