CIESC Journal ›› 2021, Vol. 72 ›› Issue (6): 3116-3129.DOI: 10.11949/0438-1157.20210124
• Special column for comprehensive utilization of salt lake resouces in Qinghai • Previous Articles Next Articles
YANG Yuanyuan1(),WANG Jinzhi1(),DU Junzhe1,DU Aobing1,ZHAO Jingwen1,2(),CUI Guanglei1,2()
Received:
2021-01-19
Revised:
2021-04-06
Online:
2021-06-05
Published:
2021-06-05
Contact:
ZHAO Jingwen,CUI Guanglei
阳源源1(),王进芝1(),杜俊哲1,杜奥冰1,赵井文1,2(),崔光磊1,2()
通讯作者:
赵井文,崔光磊
作者简介:
阳源源(1998—),男,硕士研究生,基金资助:
CLC Number:
YANG Yuanyuan, WANG Jinzhi, DU Junzhe, DU Aobing, ZHAO Jingwen, CUI Guanglei. Role of magnesium-chlorine solvation structures in magnesium electrolytes[J]. CIESC Journal, 2021, 72(6): 3116-3129.
阳源源, 王进芝, 杜俊哲, 杜奥冰, 赵井文, 崔光磊. 镁-氯溶剂化结构在镁基电解液中的作用[J]. 化工学报, 2021, 72(6): 3116-3129.
Add to citation manager EndNote|Ris|BibTeX
1 | Aurbach D, Lu Z, Schechter A, et al. Prototype systems for rechargeable magnesium batteries[J]. Nature, 2000, 407(6805): 724-727. |
2 | 刘东帆, 孙淑英, 于建国. 盐湖卤水提锂技术研究与发展[J]. 化工学报, 2018, 69(1): 141-155. |
Liu D F, Sun S Y, Yu J G. Research and development on technique of lithium recovery from salt lake brine[J]. CIESC Journal, 2018, 69(1): 141-155. | |
3 | 刘凡凡, 王田甜, 范丽珍. 镁离子电池关键材料研究进展[J]. 硅酸盐学报, 2020, 48(7): 947-962. |
Liu F F, Wang T T, Fan L Z. Recent development on key materials for rechargeable magnesium batteries[J]. Journal of the Chinese Ceramic Society, 2020, 48(7): 947-962. | |
4 | Saha P, Datta M K, Velikokhatnyi O I, et al. Rechargeable magnesium battery: current status and key challenges for the future[J]. Progress in Materials Science, 2014, 66: 1-86. |
5 | Aurbach D. Magnesium deposition and dissolution processes in ethereal Grignard salt solutions using simultaneous EQCM-EIS and in situ FTIR spectroscopy[J]. Electrochemical and Solid-State Letters, 1999, 3(1): 31. |
6 | Guo Y S, Yang J, NuLi Y N, et al. Study of electronic effect of Grignard reagents on their electrochemical behavior[J]. Electrochemistry Communications, 2010, 12(12): 1671-1673. |
7 | Yoo H D, Liang Y, Dong H, et al. Fast kinetics of magnesium monochloride cations in interlayer-expanded titanium disulfide for magnesium rechargeable batteries[J]. Nature Communications, 2017, 8(1): 339. |
8 | Muldoon J, Bucur C B, Gregory T. Fervent hype behind magnesium batteries: an open call to synthetic chemists—electrolytes and cathodes needed[J]. Angewandte Chemie International Edition, 2017, 56(40): 12064-12084. |
9 | Genders J D, Pletcher D. Studies using microelectrodes of the Mg(Ⅱ)/Mg couple in tetrahydrofuran and propylene carbonate[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1986, 199(1): 93-100. |
10 | Sakamoto S, Imamoto T, Yamaguchi K. Constitution of Grignard reagent RMgCl in tetrahydrofuran[J]. Organic Letters, 2001, 3(12): 1793-1795. |
11 | Mizrahi O, Amir N, Pollak E, et al. Electrolyte solutions with a wide electrochemical window for rechargeable magnesium batteries[J]. Journal of the Electrochemical Society, 2008, 155(2): A103. |
12 | Liebenow C, Yang Z, Lobitz P. The electrodeposition of magnesium using solutions of organomagnesium halides, amidomagnesium halides and magnesium organoborates[J]. Electrochemistry Communications, 2000, 2(9): 641-645. |
13 | Doe R E, Han R, Hwang J, et al. Novel, electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable magnesium batteries[J]. Chemical Communications, 2014, 50(2): 243-245. |
14 | Canepa P, Gautam G S, Malik R, et al. Understanding the initial stages of reversible Mg deposition and stripping in inorganic nonaqueous electrolytes[J]. Chemistry of Materials, 2015, 27(9): 3317-3325. |
15 | Singh N, Arthur T S, Ling C, et al. A high energy-density tin anode for rechargeable magnesium-ion batteries[J]. Chem. Commun., 2013, 49(2): 149-151. |
16 | Lapidus S H, Rajput N N, Qu X H, et al. Solvation structure and energetics of electrolytes for multivalent energy storage[J]. Physical Chemistry Chemical Physics, 2014, 16(40): 21941-21945. |
17 | Attias R, Salama M, Hirsch B, et al. Anode-electrolyte interfaces in secondary magnesium batteries[J]. Joule, 2019, 3(1): 27-52. |
18 | Aurbach D, Gizbar H, Schechter A, et al. Electrolyte solutions for rechargeable magnesium batteries based on organomagnesium chloroaluminate complexes[J]. Journal of the Electrochemical Society, 2002, 149(2): A115. |
19 | Pour N, Gofer Y, Major D T, et al. Structural analysis of electrolyte solutions for rechargeable Mg batteries by stereoscopic means and DFT calculations[J]. Journal of the American Chemical Society, 2011, 133(16): 6270-6278. |
20 | Kim H S, Arthur T S, Allred G D, et al. Structure and compatibility of a magnesium electrolyte with a sulphur cathode[J]. Nature Communications, 2011, 2: 427. |
21 | Pan B F, Huang J H, Sa N Y, et al. MgCl2: the key ingredient to improve chloride containing electrolytes for rechargeable magnesium-ion batteries[J]. Journal of the Electrochemical Society, 2016, 163(8): A1672-A1677. |
22 | Benmayza A, Ramanathan M, Arthur T S, et al. Effect of electrolytic properties of a magnesium organohaloaluminate electrolyte on magnesium deposition[J]. The Journal of Physical Chemistry C, 2013, 117(51): 26881-26888. |
23 | Zhao Y Y, Wang D S, Yang D, et al. Superior Mg2+ storage properties of VS2 nanosheets by using an APC-PP14Cl/THF electrolyte[J]. Energy Storage Materials, 2019, 23: 749-756. |
24 | Wang L, Jiang B, Vullum P E, et al. High interfacial charge storage capability of carbonaceous cathodes for Mg batteries[J]. ACS Nano, 2018, 12(3): 2998-3009. |
25 | Zhao-Karger Z, Mueller J E, Zhao X Y, et al. Novel transmetalation reaction for electrolyte synthesis for rechargeable magnesium batteries[J]. RSC Advances, 2014, 4(51): 26924-26927. |
26 | Merrill L C, Schaefer J L. Electrochemical properties and speciation in Mg(HMDS)2-based electrolytes for magnesium batteries as a function of ethereal solvent type and temperature[J]. Langmuir, 2017, 33(37): 9426-9433. |
27 | Liao C, Sa N Y, Key B, et al. The unexpected discovery of the Mg(HMDS)2/MgCl2 complex as a magnesium electrolyte for rechargeable magnesium batteries[J]. Journal of Materials Chemistry A, 2015, 3(11): 6082-6087. |
28 | Dongmo S, Zaubitzer S, Schüler P, et al. Stripping and plating a magnesium metal anode in bromide-based non-nucleophilic electrolytes[J]. ChemSusChem, 2020, 13(13): 3530-3538. |
29 | Shterenberg I, Salama M, Gofer Y, et al. The challenge of developing rechargeable magnesium batteries[J]. MRS Bulletin, 2014, 39(5): 453-460. |
30 | Lu Z, Schechter A, Moshkovich M, et al. On the electrochemical behavior of magnesium electrodes in polar aprotic electrolyte solutions[J]. Journal of Electroanalytical Chemistry, 1999, 466(2): 203-217. |
31 | Liu T B, Shao Y Y, Li G S, et al. A facile approach using MgCl2 to formulate high performance Mg2+ electrolytes for rechargeable Mg batteries[J]. Journal of Materials Chemistry A, 2014, 2(10): 3430. |
32 | Barile C J, Barile E C, Zavadil K R, et al. Electrolytic conditioning of a magnesium aluminum chloride complex for reversible magnesium deposition[J]. The Journal of Physical Chemistry C, 2014, 118(48): 27623-27630. |
33 | Ha J H, Adams B, Cho J H, et al. A conditioning-free magnesium chloride complex electrolyte for rechargeable magnesium batteries[J]. Journal of Materials Chemistry A, 2016, 4(19): 7160-7164. |
34 | Fan H Y, Zheng Z Z, Zhao L J, et al. Extending cycle life of Mg/S battery by activation of Mg anode/electrolyte interface through an LiCl-assisted MgCl2 solubilization mechanism[J]. Advanced Functional Materials, 2020, 30(9): 1909370. |
35 | See K A, Liu Y M, Ha Y, et al. Effect of concentration on the electrochemistry and speciation of the magnesium aluminum chloride complex electrolyte solution[J]. ACS Applied Materials & Interfaces, 2017, 9(41): 35729-35739. |
36 | Zhang Z H, Dong S M, Cui Z L, et al. Rechargeable magnesium batteries using conversion-type cathodes: a perspective and minireview[J]. Small Methods, 2018, 2(10): 1800020. |
37 | Hou T H, Monroe C W. Exploration of novel magnesium battery electrolytes based on inorganic salts[J]. ECS Transactions, 2017, 77(1): 23-31. |
38 | Ha J H, Cho J, Kim J H, et al. Synthesis of magnesium chloride complex electrolyte: galvanic couple assisted catalytic dissolution of magnesium in ethereal solution[J]. Journal of Power Sources, 2018, 398: 120-127. |
39 | Kim S S, Bevilacqua S C, See K A. Conditioning-free Mg electrolyte by the minor addition of Mg(HMDS)2[J]. ACS Applied Materials & Interfaces, 2020, 12(5): 5226-5233. |
40 | He Y S, Li Q, Yang L L, et al. Electrochemical-conditioning-free and water-resistant hybrid AlCl3/MgCl2/Mg(TFSI)2 electrolytes for rechargeable magnesium batteries[J]. Angewandte Chemie International Edition, 2019, 58(23): 7615-7619. |
41 | He S J, Luo J, Liu T L. MgCl2/AlCl3 electrolytes for reversible Mg deposition/stripping: electrochemical conditioning or not?[J]. Journal of Materials Chemistry A, 2017, 5(25): 12718-12722. |
42 | Bieker G, Wellmann J, Kolek M, et al. Influence of cations in lithium and magnesium polysulphide solutions: dependence of the solvent chemistry[J]. Physical Chemistry Chemical Physics, 2017, 19(18): 11152-11162. |
43 | Bieker G, Salama M, Kolek M, et al. The power of stoichiometry: conditioning and speciation of MgCl2/AlCl3 in tetraethylene glycol dimethyl ether-based electrolytes[J]. ACS Applied Materials & Interfaces, 2019, 11(27): 24057-24066. |
44 | Sa N Y, Rajput N N, Wang H, et al. Concentration dependent electrochemical properties and structural analysis of a simple magnesium electrolyte: magnesium bis(trifluoromethane sulfonyl)imide in diglyme[J]. RSC Advances, 2016, 6(114): 113663-113670. |
45 | Chen Y, Jaegers N R, Wang H, et al. Role of solvent rearrangement on Mg2+ solvation structures in dimethoxyethane solutions using multimodal NMR analysis[J]. The Journal of Physical Chemistry Letters, 2020, 11(15): 6443-6449. |
46 | Salama M, Shterenberg I, Gizbar H, et al. Unique behavior of dimethoxyethane (DME)/Mg(N(SO2CF3)2)2 solutions[J]. The Journal of Physical Chemistry C, 2016, 120(35): 19586-19594. |
47 | Ha S Y, Lee Y W, Woo S W, et al. Magnesium (Ⅱ) bis(trifluoromethane sulfonyl) imide-based electrolytes with wide electrochemical windows for rechargeable magnesium batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(6): 4063-4073. |
48 | Rajput N N, Qu X H, Sa N Y, et al. The coupling between stability and ion pair formation in magnesium electrolytes from first-principles quantum mechanics and classical molecular dynamics[J]. Journal of the American Chemical Society, 2015, 137(9): 3411-3420. |
49 | Pan B F, Zhou D H, Huang J H, et al. 2, 5-Dimethoxy-1, 4-benzoquinone (DMBQ) as organic cathode for rechargeable magnesium-ion batteries[J]. Journal of the Electrochemical Society, 2016, 163(3): A580-A583. |
50 | Cheng Y W, Stolley R M, Han K S, et al. Highly active electrolytes for rechargeable Mg batteries based on a [Mg2(μ-Cl)2]2+ cation complex in dimethoxyethane[J]. Physical Chemistry Chemical Physics, 2015, 17(20): 13307-13314. |
51 | Li X G, Gao T, Han F D, et al. Reducing Mg anode overpotential via ion conductive surface layer formation by iodine additive[J]. Advanced Energy Materials, 2018, 8(7): 1701728. |
52 | Wang H, Feng X F, Chen Y, et al. Reversible electrochemical interface of Mg metal and conventional electrolyte enabled by intermediate adsorption[J]. ACS Energy Letters, 2020, 5(1): 200-206. |
53 | Ding M S, Diemant T, Behm R J, et al. Dendrite growth in Mg metal cells containing Mg(TFSI)2/glyme electrolytes[J]. Journal of the Electrochemical Society, 2018, 165(10): A1983-A1990. |
54 | Baskin A, Prendergast D. Exploration of the detailed conditions for reductive stability of Mg(TFSI)2 in diglyme: implications for multivalent electrolytes[J]. The Journal of Physical Chemistry C, 2016, 120(7): 3583-3594. |
55 | Kang S J, Kim H, Hwang S, et al. Electrolyte additive enabling conditioning-free electrolytes for magnesium batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(1): 517-524. |
56 | Shterenberg I, Salama M, Yoo H D, et al. Evaluation of (CF3SO2)2N- (TFSI) based electrolyte solutions for Mg batteries[J]. Journal of the Electrochemical Society, 2015, 162(13): A7118-A7128. |
57 | Salama M, Shterenberg I, Shimon L J W, et al. Structural analysis of magnesium chloride complexes in dimethoxyethane solutions in the context of Mg batteries research[J]. The Journal of Physical Chemistry C, 2017, 121(45): 24909-24918. |
58 | Sa N Y, Pan B F, Saha-Shah A, et al. Role of chloride for a simple, non-Grignard Mg electrolyte in ether-based solvents[J]. ACS Applied Materials & Interfaces, 2016, 8(25): 16002-16008. |
59 | Mohtadi R, Matsui M, Arthur T S, et al. Magnesium borohydride: from hydrogen storage to magnesium battery[J]. Angewandte Chemie International Edition, 2012, 51(39): 9780-9783. |
60 | Carter T J, Mohtadi R, Arthur T S, et al. Boron clusters as highly stable magnesium-battery electrolytes[J]. Angewandte Chemie International Edition, 2014, 53(12): 3173-3177. |
61 | Tutusaus O, Mohtadi R, Arthur T S, et al. An efficient halogen-free electrolyte for use in rechargeable magnesium batteries[J]. Angewandte Chemie International Edition, 2015, 54(27): 7900-7904. |
62 | McArthur S G, Jay R, Geng L X, et al. Below the 12-vertex: 10-vertex carborane anions as non-corrosive, halide free, electrolytes for rechargeable Mg batteries[J]. Chemical Communications, 2017, 53(32): 4453-4456. |
63 | McArthur S G, Geng L X, Guo J C, et al. Cation reduction and comproportionation as novel strategies to produce high voltage, halide free, carborane based electrolytes for rechargeable Mg batteries[J]. Inorganic Chemistry Frontiers, 2015, 2(12): 1101-1104. |
64 | Kar M, Simons T J, Forsyth M, et al. Ionic liquid electrolytes as a platform for rechargeable metal-air batteries: a perspective[J]. Physical Chemistry Chemical Physics, 2014, 16(35): 18658-18674. |
65 | NuLi Y N, Yang J, Wang J L, et al. Electrochemical magnesium deposition and dissolution with high efficiency in ionic liquid[J]. Electrochemical and Solid-State Letters, 2005, 8(11): C166. |
66 | Sutto T E, Duncan T T. Electrochemical and structural characterization of Mg ion intercalation into Co3O4 using ionic liquid electrolytes[J]. Electrochimica Acta, 2012, 80: 413-417. |
67 | Watkins T, Buttry D A. Determination of Mg2+ speciation in a TFSI: based ionic liquid with and without chelating ethers using Raman spectroscopy[J]. The Journal of Physical Chemistry B, 2015, 119(23): 7003-7014. |
68 | Ma Z, Forsyth M, MacFarlane D R, et al. Ionic liquid/tetraglyme hybrid Mg[TFSI]2 electrolytes for rechargeable Mg batteries[J]. Green Energy & Environment, 2019, 4(2): 146-153. |
69 | Gregory T D, Hoffman R J, Winterton R C. Nonaqueous electrochemistry of magnesium: applications to energy storage[J]. Journal of the Electrochemical Society, 1990, 137(3): 775-780. |
70 | Attias R, Chae M S, Dlugatch B, et al. The role of surface adsorbed Cl- complexes in rechargeable magnesium batteries[J]. ACS Catalysis, 2020, 10(14): 7773-7784. |
71 | Xue X L, Chen R P, Song X M, et al. Electrochemical Mg2+ displacement driven reversible copper extrusion/intrusion reactions for high-rate rechargeable magnesium batteries[J]. Advanced Functional Materials, 2021, 31(10): 2009394. |
72 | Cheng Y W, Liu T B, Shao Y Y, et al. Electrochemically stable cathode current collectors for rechargeable magnesium batteries[J]. J. Mater. Chem. A, 2014, 2(8): 2473-2477. |
73 | Prabakar S J R, Park C, Ikhe A B, et al. Simultaneous suppression of metal corrosion and electrolyte decomposition by graphene oxide protective coating in magnesium-ion batteries: toward a 4-V-wide potential window[J]. ACS Applied Materials & Interfaces, 2017, 9(50): 43767-43773. |
74 | Lancry E, Levi E, Gofer Y, et al. Leaching chemistry and the performance of the Mo6S8 cathodes in rechargeable Mg batteries[J]. Chem. Mater., 2004, 16(14): 2832-2838. |
75 | Novák P, Desilvestro J. Electrochemical insertion of magnesium in metal oxides and sulfides from aprotic electrolytes[J]. Journal of the Electrochemical Society, 1993, 140(1): 140-144. |
76 | Sun X Q, Bonnick P, Duffort V, et al. A high capacity thiospinel cathode for Mg batteries[J]. Energy & Environmental Science, 2016, 9(7): 2273-2277. |
77 | You C L, Wu X W, Yuan X H, et al. Advances in rechargeable Mg batteries[J]. Journal of Materials Chemistry A, 2020, 8(48): 25601-25625. |
78 | Mao M L, Lin Z J, Tong Y X, et al. Iodine vapor transport-triggered preferential growth of chevrel Mo6S8 nanosheets for advanced multivalent batteries[J]. ACS Nano, 2020, 14(1): 1102-1110. |
79 | Levi E, Lancry E, Mitelman A, et al. Phase diagram of Mg insertion into chevrel phases, MgxMo6T8 (T: S, Se)(2). The crystal structure of triclinic MgMo6Se8[J]. Chem. Mater., 2006, 18(16): 3705-3714. |
80 | Mao M, Gao T, Hou S, et al. A critical review of cathodes for rechargeable Mg batteries[J]. Chemical Society Reviews, 2018, 47(23): 8804-8841. |
81 | Aurbach D, Suresh G, Levi E, et al. Progress in rechargeable magnesium battery technology[J]. Advanced Materials, 2007, 19(23): 4260-4267. |
82 | Mukherjee A, Taragin S, Aviv H, et al. Rationally designed vanadium pentoxide as high capacity insertion material for Mg-ion[J]. Advanced Functional Materials, 2020, 30(38): 2003518. |
83 | Fu Q, Sarapulova A, Trouillet V, et al. In operando synchrotron diffraction and in operando X-ray absorption spectroscopy investigations of orthorhombic V2O5 nanowires as cathode materials for Mg-ion batteries[J]. Journal of the American Chemical Society, 2019, 141(6): 2305-2315. |
84 | Tang H, Xiong F Y, Jiang Y L, et al. Alkali ions pre-intercalated layered vanadium oxide nanowires for stable magnesium ions storage[J]. Nano Energy, 2019, 58: 347-354. |
85 | Yu L, Zhang X G. Electrochemical insertion of magnesium ions into V2O5 from aprotic electrolytes with varied water content[J]. Journal of Colloid and Interface Science, 2004, 278(1): 160-165. |
86 | Wan L F, Perdue B R, Apblett C A, et al. Mg desolvation and intercalation mechanism at the Mo6S8 chevrel phase surface[J]. Chemistry of Materials, 2015, 27(17): 5932-5940. |
87 | Levi E, Levi M D, Chasid O, et al. A review on the problems of the solid state ions diffusion in cathodes for rechargeable Mg batteries[J]. Journal of Electroceramics, 2009, 22(1/2/3): 13-19. |
88 | Kim K I, Guo Q B, Tang L T, et al. Reversible insertion of Mg-Cl superhalides in graphite as a cathode for aqueous dual-ion batteries[J]. Angewandte Chemie, 2020, 132(45): 20096-20100. |
[1] | Xiaoqing ZHOU, Chunyu LI, Guang YANG, Aifeng CAI, Jingyi WU. Icing kinetics and mechanism of droplet impinging on supercooled corrugated plates with different curvature [J]. CIESC Journal, 2023, 74(S1): 141-153. |
[2] | Lisen BI, Bin LIU, Hengxiang HU, Tao ZENG, Zhuorui LI, Jianfei SONG, Hanming WU. Molecular dynamics study on evaporation modes of nanodroplets at rough interfaces [J]. CIESC Journal, 2023, 74(S1): 172-178. |
[3] | Chao HU, Yuming DONG, Wei ZHANG, Hongling ZHANG, Peng ZHOU, Hongbin XU. Preparation of high-concentration positive electrolyte of vanadium redox flow battery by activating vanadium pentoxide with highly concentrated sulfuric acid [J]. CIESC Journal, 2023, 74(S1): 338-345. |
[4] | Junfeng LU, Huaiyu SUN, Yanlei WANG, Hongyan HE. Molecular understanding of interfacial polarization and its effect on ionic liquid hydrogen bonds [J]. CIESC Journal, 2023, 74(9): 3665-3680. |
[5] | Dian LIN, Guomei JIANG, Xiubin XU, Bo ZHAO, Dongmei LIU, Xu WU. Preparation and drag reduction effect of silicon-based liquid-like anti-crude-oil-adhesion coatings [J]. CIESC Journal, 2023, 74(8): 3438-3445. |
[6] | Yu FU, Xingchong LIU, Hanyu WANG, Haimin LI, Yafei NI, Wenjing ZOU, Yue LEI, Yongshan PENG. Research on F3EACl modification layer for improving performance of perovskite solar cells [J]. CIESC Journal, 2023, 74(8): 3554-3563. |
[7] | Ben ZHANG, Songbai WANG, Ziya WEI, Tingting HAO, Xuehu MA, Rongfu WEN. Capillary liquid film condensation and heat transfer enhancement driven by superhydrophilic porous metal structure [J]. CIESC Journal, 2023, 74(7): 2824-2835. |
[8] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[9] | Laiming LUO, Jin ZHANG, Zhibin GUO, Haining WANG, Shanfu LU, Yan XIANG. Simulation and experiment of high temperature polymer electrolyte membrane fuel cells stack in the 1—5 kW range [J]. CIESC Journal, 2023, 74(4): 1724-1734. |
[10] | Chi YIN, Zhengguo ZHANG, Ziye LING, Xiaoming FANG. Combining paraffin@silica nanocapsules with carbon fiber to develop a phase change thermal interface material for efficient heat dissipation [J]. CIESC Journal, 2023, 74(4): 1795-1804. |
[11] | Weijiang CHENG, Heqi WANG, Xiang GAO, Na LI, Sainan MA. Research progress on film-forming electrolyte additives for Si-based lithium-ion batteries [J]. CIESC Journal, 2023, 74(2): 571-584. |
[12] | Xin LI, Shaojuan ZENG, Kuilin PENG, Lei YUAN, Xiangping ZHANG. Research progress and tendency of CO2 electrocatalytic reduction to syngas [J]. CIESC Journal, 2023, 74(1): 313-329. |
[13] | Yi LIAO, Yabin NIU, Yanqiu PAN, Lu YU. Modeling the effects of mixed surfactants on the behaviors and properties of the oil-water interface with molecular dynamics [J]. CIESC Journal, 2022, 73(9): 4003-4014. |
[14] | Wangxin GE, Yihua ZHU, Hongliang JIANG, Chunzhong LI. Research progress on electrolytes for carbon dioxide electroreduction [J]. CIESC Journal, 2022, 73(8): 3433-3447. |
[15] | Wen LI, Zhong LAN, Weili QIANG, Wenzhi REN, Bingang DU, Xuehu MA. Evolution characteristics of clusters in transitional region near subcooled wall during condensation process of steam [J]. CIESC Journal, 2022, 73(7): 2865-2873. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||