CIESC Journal ›› 2021, Vol. 72 ›› Issue (8): 4255-4266.DOI: 10.11949/0438-1157.20210224
• Surface and interface engineering • Previous Articles Next Articles
Hui REN1(),Hong WANG1,2(),Xun ZHU1,2,Rong CHEN1,2,Qiang LIAO1,2,Yudong DING1,2
Received:
2021-02-03
Revised:
2021-04-19
Online:
2021-08-05
Published:
2021-08-05
Contact:
Hong WANG
任辉1(),王宏1,2(),朱恂1,2,陈蓉1,2,廖强1,2,丁玉栋1,2
通讯作者:
王宏
作者简介:
任辉(1996—),女,硕士研究生,基金资助:
CLC Number:
Hui REN, Hong WANG, Xun ZHU, Rong CHEN, Qiang LIAO, Yudong DING. Lateral bouncing behavior of droplets on the wettability-patterned surface[J]. CIESC Journal, 2021, 72(8): 4255-4266.
任辉, 王宏, 朱恂, 陈蓉, 廖强, 丁玉栋. 润湿性图案表面上的液滴侧向弹跳行为[J]. 化工学报, 2021, 72(8): 4255-4266.
Add to citation manager EndNote|Ris|BibTeX
条纹尺寸 | 针管高度 | 偏移距离N |
---|---|---|
9 mm×0.3 mm | 10~60 mm | 1 mm |
2 mm | ||
9 mm×0.5 mm | ||
3 mm |
Table 1 Experimental parameters setting
条纹尺寸 | 针管高度 | 偏移距离N |
---|---|---|
9 mm×0.3 mm | 10~60 mm | 1 mm |
2 mm | ||
9 mm×0.5 mm | ||
3 mm |
Fig.8 Comparison of the motion behavior of the impact droplet at different positions on the surface (hydrophilic stripe: 9 mm×0.3 mm, impact height: 30 mm)
Fig.9 The contact area between impact droplet and hydrophilic stripe on the surface at different offset distances (hydrophilic stripe: 9 mm×0.3 mm, impact height: 30 mm)
Fig.14 The ratio of the contact area between the impact droplet and the hydrophilic area to the maximum spread area of the droplet (hydrophilic stripe: 9 mm×0.3 mm, N=2 mm)
1 | Parker A R, Lawrence C R. Water capture by a desert beetle[J]. Nature, 2001, 414(6859): 33-34. |
2 | Ju J, Bai H, Zheng Y, et al. A multi-structural and multi-functional integrated fog collection system in cactus[J]. Nature Communications, 2012, 3: 1247. |
3 | de Ruiter J, Soto D, Varanasi K K. Self-peeling of impacting droplets[J]. Nature Physics, 2018, 14(1): 35-39. |
4 | 马强, 吴晓敏. 表面特性对结霜和融霜排液的影响[J]. 化工学报, 2017, 68: 90-95. |
Ma Q, Wu X M. Effect of surface wettability on frosting, defrosting and drainage[J]. CIESC Journal, 2017, 68: 90-95. | |
5 | Sas I, Gorga R E, Joines J A, et al. Literature review on superhydrophobic self-cleaning surfaces produced by electrospinning[J]. Journal of Polymer Science Part B: Polymer Physics, 2012, 50(12): 824-845. |
6 | Mahapatra P S, Ghosh A, Ganguly R, et al. Key design and operating parameters for enhancing dropwise condensation through wettability patterning[J]. International Journal of Heat and Mass Transfer, 2016, 92: 877-883. |
7 | Sharma C S, Lam C W E, Milionis A, et al. Self-sustained cascading coalescence in surface condensation[J]. ACS Applied Materials & Interfaces, 2019, 11(30): 27435-27442. |
8 | 范亚茹, 陈志豪, 赵彦杰, 等. 混合蒸气冷凝过程中均匀温度面上液滴自发移动现象及特性[J]. 化工学报, 2019, 70(4): 1358-1366. |
Fan Y R, Chen Z H, Zhao Y J, et al. Characteristics of spontaneous movement of condensate drop on uniform temperature surface during condensation of binary vapor mixture[J]. CIESC Journal, 2019, 70(4): 1358-1366. | |
9 | Song D, Bhushan B. Water condensation and transport on bioinspired triangular patterns with heterogeneous wettability at a low temperature[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 377(2138): 20180335. |
10 | Bai H Y, Zhang C H, Long Z Y, et al. A hierarchical hydrophilic/hydrophobic cooperative fog collector possessing self-pumped droplet delivering ability[J]. Journal of Materials Chemistry A, 2018, 6(42): 20966-20972. |
11 | Xing Y, Shang W F, Wang Q Q, et al. Integrative bioinspired surface with wettable patterns and gradient for enhancement of fog collection[J]. ACS Applied Materials & Interfaces, 2019, 11(11): 10951-10958. |
12 | Wan Y L, Cui P, Xu J K, et al. Directional water-collecting behavior of pine needle surface[J]. Materials Letters, 2019, 255: 126561. |
13 | Sarkar S, Sabhachandani P, Stroopinsky D, et al. Dynamic analysis of immune and cancer cell interactions at single cell level in microfluidic droplets[J]. Biomicrofluidics, 2016, 10(5): 054115. |
14 | Gao C L, Wang L, Lin Y C, et al. Droplets manipulated on photothermal organogel surfaces[J]. Advanced Functional Materials, 2018, 28(35): 1803072. |
15 | Cheng Y, Yang Q, Fang Y, et al. Underwater anisotropic 3D superoleophobic tracks applied for the directional movement of oil droplets and the microdroplets reaction[J]. Advanced Materials Interfaces, 2019, 6(10): 1900067. |
16 | Chaudhury M K, Whitesides G M. How to make water Run uphill[J]. Science, 1992, 256(5063): 1539-1541. |
17 | Daniel S, Chaudhury M K, Chen J C. Fast drop movements resulting from the phase change on a gradient surface[J]. Science, 2001, 291(5504): 633-636. |
18 | Zheng Y, Bai H, Huang Z, et al. Directional water collection on wetted spider silk[J]. Nature, 2010, 463(7281): 640-643. |
19 | Yan Y F, He L L, Li Y, et al. Unidirectional liquid transportation and selective permeation for oil/water separation on a gradient nanowire structured surface[J]. Journal of Membrane Science, 2019, 582: 246-253. |
20 | Chen X Z, Li X, Zuo P, et al. Controllable fabrication of unidirectional liquid spreading surface through confining plasma eruption and femtosecond laser double pulses[J]. Applied Surface Science, 2020, 504: 144110. |
21 | Yang C, Zhang Z W, Li G. Programmable droplet manipulation by combining a superhydrophobic magnetic film and an electromagnetic pillar array[J]. Sensors and Actuators B: Chemical, 2018, 262: 892-901. |
22 | Yang Z N, Park J K, Kim S. Magnetically responsive elastomer-silicon hybrid surfaces for fluid and light manipulation[J]. Small, 2018, 14(2): 1702839. |
23 | Rossegger E, Hennen D, Griesser T, et al. Directed motion of water droplets on multi-gradient photopolymer surfaces[J]. Polymer Chemistry, 2019, 10(15): 1882-1893. |
24 | 杨宝海, 王宏, 朱恂, 等. 速度对液滴撞击超疏水壁面行为特性的影响[J]. 化工学报, 2012, 63(10): 3027-3033. |
Yang B H, Wang H, Zhu X, et al. Effect of velocity on behavior of droplet impacting superhydrophobic surface[J]. CIESC Journal, 2012, 63(10): 3027-3033. | |
25 | Liang G T, Guo Y L, Yang Y, et al. Liquid sheet behaviors during a drop impact on wetted cylindrical surfaces[J]. International Communications in Heat and Mass Transfer, 2014, 54: 67-74. |
26 | 胡志锋, 褚福强, 张旋, 等. 液滴偏心撞击超疏水微柱表面: 形态变化与接触时间[J]. 工程热物理学报, 2020, 41(9): 2266-2271. |
Hu Z F, Chu F Q, Zhang X, et al. Off-centered droplet impact on the superhydrophobic surface with a single ridge: morphological evolution and contact time[J]. Journal of Engineering Thermophysics, 2020, 41(9): 2266-2271. | |
27 | Ito Y, Heydari M, Hashimoto A, et al. The movement of a water droplet on a gradient surface prepared by photodegradation[J]. Langmuir, 2007, 23(4): 1845-1850. |
28 | Liu C S, Zheng D M, Zhou J G, et al. Fabrication of surface energy gradients using self-assembled monolayer surfaces prepared by photodegradation[J]. Materials Science Forum, 2011, 688: 102-106. |
29 | Schneider J, Matsuoka M, Takeuchi M, et al. Understanding TiO2 photocatalysis: mechanisms and materials[J]. Chemical Reviews, 2014, 114(19): 9919-9986. |
30 | Pan Y L, Kong W T, Bhushan B, et al. Rapid, ultraviolet-induced, reversibly switchable wettability of superhydrophobic/superhydrophilic surfaces[J]. Beilstein Journal of Nanotechnology, 2019, 10: 866-873. |
31 | Xu J L, Chen Y Y, Xie J. Non-dimensional numerical study of droplet impacting on heterogeneous hydrophilicity/hydrophobicity surface[J]. International Journal of Heat and Mass Transfer, 2018, 116: 951-968. |
32 | Antonini C, Amirfazli A, Marengo M. Drop impact and wettability: from hydrophilic to superhydrophobic surfaces[J]. Physics of Fluids, 2012, 24(10): 102104. |
33 | Zou L, Wang H, Zhu X, et al. Droplet splitting on chemically striped surface[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 537: 139-148. |
34 | Farshchian B, Pierce J, Beheshti M S, et al. Droplet impinging behavior on surfaces with wettability contrasts[J]. Microelectronic Engineering, 2018, 195: 50-56. |
[1] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[2] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[3] | Xin WU, Jianying GONG, Long JIN, Yutao WANG, Ruining HUANG. Study on the transportation characteristics of droplets on the aluminium surface under ultrasonic excitation [J]. CIESC Journal, 2023, 74(S1): 104-112. |
[4] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[5] | Tianhua CHEN, Zhaoxuan LIU, Qun HAN, Chengbin ZHANG, Wenming LI. Research progress and influencing factors of the heat transfer enhancement of spray cooling [J]. CIESC Journal, 2023, 74(8): 3149-3170. |
[6] | Ming DONG, Jinliang XU, Guanglin LIU. Molecular dynamics study on heterogeneous characteristics of supercritical water [J]. CIESC Journal, 2023, 74(7): 2836-2847. |
[7] | Xuanzhi HE, Yongqing HE, Guiye WEN, Feng JIAO. Ferrofluid droplet neck self-similar breakup behavior [J]. CIESC Journal, 2023, 74(7): 2889-2897. |
[8] | Zhihang ZHENG, Junnan MA, Zihan YAN, Chunxi LU. Study on the pressure pulsation characteristics in jet influence zone of riser [J]. CIESC Journal, 2023, 74(6): 2335-2350. |
[9] | Enzhe BI, Shuangxi LI, Lianxiang SHA, Dengyu LIU, Kaifang CHEN. Multi-objective optimization analysis of high temperature dynamic pressure split ring seal parameters [J]. CIESC Journal, 2023, 74(6): 2565-2579. |
[10] | Xinyue WANG, Junjie WANG, Sixian CAO, Cui WANG, Lingkun LI, Hongyu WU, Jing HAN, Hao WU. Effect of glass primary container surface modification on monoclonal antibody aggregates induced by mechanical stress [J]. CIESC Journal, 2023, 74(6): 2580-2588. |
[11] | Xinya LI, Lei XING, Minghu JIANG, Lixin ZHAO. Research on performance of downhole oil-water separation hydrocyclone enhanced by inverted cone gas injection [J]. CIESC Journal, 2023, 74(3): 1134-1144. |
[12] | Shaohang YAN, Tianwei LAI, Yanwu WANG, Yu HOU, Shuangtao CHEN. Visual experimental study on cavitation of R134a in micro clearance [J]. CIESC Journal, 2023, 74(3): 1054-1061. |
[13] | Chenghao ZHANG, Jing LUO, Jisong ZHANG. Advances in continuous aerobic oxidation based on nitroxyl radical catalyst in microreactors [J]. CIESC Journal, 2023, 74(2): 511-524. |
[14] | Lin SHENG, Yu CHANG, Jian DENG, Guangsheng LUO. Formation and flow characteristics of ordered bubble swarm in a step T-junction microchannel [J]. CIESC Journal, 2023, 74(1): 416-427. |
[15] | Hao XIONG, Xiaoyu LIANG, Chenxi ZHANG, Haolong BAI, Xiaoyu FAN, Fei WEI. Heavy oil to chemicals: multi-stage downer catalytic pyrolysis [J]. CIESC Journal, 2023, 74(1): 86-104. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||