CIESC Journal ›› 2023, Vol. 74 ›› Issue (6): 2580-2588.DOI: 10.11949/0438-1157.20230201
• Surface and interface engineering • Previous Articles Next Articles
Xinyue WANG1(), Junjie WANG1, Sixian CAO1, Cui WANG1, Lingkun LI1, Hongyu WU1, Jing HAN2, Hao WU1(
)
Received:
2023-03-07
Revised:
2023-05-08
Online:
2023-07-27
Published:
2023-06-05
Contact:
Hao WU
王新悦1(), 王俊杰1, 曹思贤1, 王翠1, 李灵坤1, 吴宏宇1, 韩静2, 吴昊1(
)
通讯作者:
吴昊
作者简介:
王新悦(1997—),女,硕士研究生,15755238685@163.com
基金资助:
CLC Number:
Xinyue WANG, Junjie WANG, Sixian CAO, Cui WANG, Lingkun LI, Hongyu WU, Jing HAN, Hao WU. Effect of glass primary container surface modification on monoclonal antibody aggregates induced by mechanical stress[J]. CIESC Journal, 2023, 74(6): 2580-2588.
王新悦, 王俊杰, 曹思贤, 王翠, 李灵坤, 吴宏宇, 韩静, 吴昊. 玻璃内包材界面修饰对机械应力诱导的单克隆抗体聚集体形成的影响[J]. 化工学报, 2023, 74(6): 2580-2588.
Fig.8 Morphology of subvisible particles in monoclonal antibody solution after mechanical stress treatment in untreated glass vials and glass vials coated by 17 μmol/L OTS
1 | Nuévalos M, García-Ríos E, Mancebo F J, et al. Novel monoclonal antibody-based therapies: implications for the treatment and prevention of HCMV disease[J]. Trends in Microbiology, 2023, 31(5): 480-497. |
2 | Chen Y, Zhang G L, Yang Y W, et al. The treatment of inflammatory bowel disease with monoclonal antibodies in Asia[J]. Biomedicine & Pharmacotherapy, 2023, 157: 114081. |
3 | Chi E Y, Krishnan S, Randolph T W, et al. Physical stability of proteins in aqueous solution: mechanism and driving forces in nonnative protein aggregation[J]. Pharmaceutical Research, 2003, 20(9): 1325-1336. |
4 | Kosloski M P, Miclea R D, Balu-Iyer S V. Role of glycosylation in conformational stability, activity, macromolecular interaction and immunogenicity of recombinant human factor Ⅷ[J]. The AAPS, Journal, 2009, 11(3): 424-431. |
5 | Johann F, Wöll S, Winzer M, et al. Miniaturized forced degradation of therapeutic proteins and ADCs by agitation-induced aggregation using orbital shaking of microplates[J]. Journal of Pharmaceutical Sciences, 2022, 111(5): 1401-1413. |
6 | 金鹤. 静脉输液中不溶性微粒对人体的危害及控制[J]. 上海护理, 2007, 7(5): 55-57. |
Jin H. Harm and control of insoluble particles in intravenous infusion to human body[J]. Shanghai Nursing, 2007, 7(5): 55-57. | |
7 | Joubert M K, Hokom M, Eakin C, et al. Highly aggregated antibody therapeutics can enhance the in vitro innate and late-stage T-cell immune responses[J]. Journal of Biological Chemistry, 2012, 287(30): 25266-25279. |
8 | 郭莎, 贾哲, 吴昊, 等. 单克隆抗体颗粒表征的现状与挑战[J]. 中国药事, 2022, 36(2)161-169. |
Guo S, Jia Z, Wu H, et al. Current status and challenges of particle characterization in monoclonal antibody formulation[J]. Chinese Pharmaceutical Affairs, 2022, 36(2)161-169. | |
9 | Patapoff T W, Esue O. Polysorbate 20 prevents the precipitation of a monoclonal antibody during shear[J]. Pharmaceutical Development and Technology, 2009, 14(6): 659-664. |
10 | Bam N B, Cleland J L, Yang J, et al. Tween protects recombinant human growth hormone against agitation-induced damage via hydrophobic interactions[J]. Journal of Pharmaceutical Sciences, 1998, 87(12): 1554-1559. |
11 | Wang W, Wang Y J, Wang D Q. Dual effects of Tween 80 on protein stability[J]. International Journal of Pharmaceutics, 2008, 347(1/2): 31-38. |
12 | Perevozchikova T, Nanda H, Nesta D P, et al. Protein adsorption, desorption, and aggregation mediated by solid-liquid interfaces[J]. Journal of Pharmaceutical Sciences, 2015, 104(6): 1946-1959. |
13 | Kaivosoja E, Barreto G, Levón K, et al. Chemical and physical properties of regenerative medicine materials controlling stem cell fate[J]. Annals of Medicine, 2012, 44(7): 635-650. |
14 | Wu H, Randolph T W. Aggregation and particle formation during pumping of an antibody formulation are controlled by electrostatic interactions between pump surfaces and protein molecules[J]. Journal of Pharmaceutical Sciences, 2020, 109(4): 1473-1482. |
15 | Movafaghi S, Wu H, Francino Urdániz I M, et al. The effect of container surface passivation on aggregation of intravenous immunoglobulin induced by mechanical shock[J]. Biotechnology Journal, 2020, 15(9): e2000096. |
16 | Yoneda S, Maruno T, Mori A, et al. Influence of protein adsorption on aggregation in prefilled syringes[J]. Journal of Pharmaceutical Sciences, 2021, 110(11): 3568-3579. |
17 | Biddlecombe J G, Craig A V, Zhang H, et al. Determining antibody stability: creation of solid-liquid interfacial effects within a high shear environment[J]. Biotechnology Progress, 2007, 23(5): 1218-1222. |
18 | Oliva A, Santoveña A, Fariña J, et al. Effect of high shear rate on stability of proteins: kinetic study[J]. Journal of Pharmaceutical and Biomedical Analysis, 2003, 33(2): 145-155. |
19 | Sediq A S, van Duijvenvoorde R B, Jiskoot W, et al. No touching!Abrasion of adsorbed protein is the root cause of subvisible particle formation during stirring[J]. Journal of Pharmaceutical Sciences, 2016, 105(2): 519-529. |
20 | Gerhardt A, McGraw N R, Schwartz D K, et al. Protein aggregation and particle formation in prefilled glass syringes[J]. Journal of Pharmaceutical Sciences, 2014, 103(6): 1601-1612. |
21 | Qi L, Liu J, Ronk M, et al. A holistic approach of extractables and leachables assessment of rubber stoppered glass vial systems for biotechnology products[J]. Journal of Pharmaceutical Sciences, 2021, 110(11): 3580-3593. |
22 | Oom A, Poggi M, Wikström J, et al. Surface interactions of monoclonal antibodies characterized by quartz crystal microbalance with dissipation: impact of hydrophobicity and protein self-interactions[J]. Journal of Pharmaceutical Sciences, 2012, 101(2): 519-529. |
23 | Gao F F. Adsorption of mussel protein on polymer antifouling membranes: a molecular dynamics study[J]. Molecules (Basel, Switzerland), 2021, 26(18): 5660. |
24 | Marsh R J, Jones R A L, Sferrazza M. Adsorption and displacement of a globular protein on hydrophilic and hydrophobic surfaces[J]. Colloids and Surfaces B: Biointerfaces, 2002, 23(1): 31-42. |
25 | Lefebvre G, Maze A, Jimenez R A P, et al. Surfactant protection efficacy at surfaces varies with the nature of hydrophobic materials[J]. Pharmaceutical Research, 2021, 38(12): 2157-2166. |
26 | Bainor A, Chang L, McQuade T J, et al. Bicinchoninic acid (BCA) assay in low volume[J]. Analytical Biochemistry, 2011, 410(2): 310-312. |
27 | Gerhardt A, Bonam K, Bee J S, et al. Ionic strength affects tertiary structure and aggregation propensity of a monoclonal antibody adsorbed to silicone oil-water interfaces[J]. Journal of Pharmaceutical Sciences, 2013, 102(2): 429-440. |
28 | Hawe A, Sutter M, Jiskoot W. Extrinsic fluorescent dyes as tools for protein characterization[J]. Pharmaceutical Research, 2008, 25(7): 1487-1499. |
29 | Ying P Q, Yu Y, Jin G, et al. Competitive protein adsorption studied with atomic force microscopy and imaging ellipsometry[J]. Colloids and Surfaces B: Biointerfaces, 2003, 32(1): 1-10. |
30 | Rabe M, Verdes D, Seeger S. Understanding protein adsorption phenomena at solid surfaces[J]. Advances in Colloid and Interface Science, 2011, 162(1/2): 87-106. |
31 | Chen S F, Liu L Y, Zhou J, et al. Controlling antibody orientation on charged self-assembled monolayers[J]. Langmuir, 2003, 19: 2859-2864. |
32 | Bee J S, Schwartz D K, Trabelsi S, et al. Production of particles of therapeutic proteins at the air-water interface during compression/dilation cycles[J]. Soft Matter, 2012, 8(40): 10329-10335. |
33 | Haynes Charles A, Willem N. Globular proteins at solid/liquid interfaces[J]. Colloids and Surfaces B: Biointerfaces, 1994, 2(6): 517-566. |
34 | Mathes J, Friess W. Influence of pH and ionic strength on IgG adsorption to vials[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 78(2): 239-247. |
35 | Quan X B, Liu J, Zhou J. Multiscale modeling and simulations of protein adsorption: progresses and perspectives[J]. Current Opinion in Colloid & Interface Science, 2019, 41: 74-85. |
36 | Wu H, Randolph T W. Rapid quantification of protein particles in high-concentration antibody formulations[J]. Journal of Pharmaceutical Sciences, 2019, 108(3): 1110-1116. |
[1] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[2] | Zhenghao JIN, Lijie FENG, Shuhong LI. Energy and exergy analysis of a solution cross-type absorption-resorption heat pump using NH3/H2O as working fluid [J]. CIESC Journal, 2023, 74(S1): 53-63. |
[3] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[4] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[5] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[6] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[7] | Lei WANG, Lei WANG, Yunlong BAI, Liuliu HE. Preparation of SA lithium ion sieve membrane and its adsorptive properties [J]. CIESC Journal, 2023, 74(5): 2046-2056. |
[8] | Wenqi HOU, Yan SUN, Xiaoyan DONG. Basification modification of transthyretin significantly enhances inhibitory effect on amyloid-β protein aggregation [J]. CIESC Journal, 2023, 74(5): 2100-2110. |
[9] | Jinsheng REN, Kerun LIU, Zhiwei JIAO, Jiaxiang LIU, Yuan YU. Research on the mechanism of disaggregation of particle aggregates near the guide vanes of turbo air classifier [J]. CIESC Journal, 2023, 74(4): 1528-1538. |
[10] | Mujin LI, Song HU, Depan SHI, Peng ZHAO, Rui GAO, Jinlong LI. A process for offgas absorption and purification of 1,2-butylene oxide [J]. CIESC Journal, 2023, 74(4): 1607-1618. |
[11] | Can YANG, Xueqi SUN, Minghua SHANG, Jian ZHANG, Xiangping ZHANG, Shaojuan ZENG. Research status and prospect of CO2 absorption and separation by phase-change ionic liquid systems [J]. CIESC Journal, 2023, 74(4): 1419-1432. |
[12] | Yuming CHEN, Wei LI, Xiang YAN, Jingdai WANG, Yongrong YANG. Research progress on regulation of aggregation structure for nascent polyethylene [J]. CIESC Journal, 2023, 74(2): 487-499. |
[13] | Wanyuan HE, Yiyu CHEN, Chunying ZHU, Taotao FU, Xiqun GAO, Youguang MA. Study on gas-liquid mass transfer characteristics in microchannel with array bulges [J]. CIESC Journal, 2023, 74(2): 690-697. |
[14] | Xuqing WANG, Shenglin YAN, Litao ZHU, Xibao ZHANG, Zhenghong LUO. Research progress on the mass transfer process of CO2 absorption by amines in a packed column [J]. CIESC Journal, 2023, 74(1): 237-256. |
[15] | Wei LIU, Yan SUN. Research progress on amyloid β-protein aggregation and its regulation [J]. CIESC Journal, 2022, 73(6): 2381-2396. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 322
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 198
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||