CIESC Journal ›› 2021, Vol. 72 ›› Issue (9): 4487-4495.DOI: 10.11949/0438-1157.20210245
• Thermodynamics • Previous Articles Next Articles
Zihang LI1(),Zhanbo WANG1,Zheng MIAO1,2(
),Xianbing JI1,2
Received:
2021-02-08
Revised:
2021-06-12
Online:
2021-09-05
Published:
2021-09-05
Contact:
Zheng MIAO
通讯作者:
苗政
作者简介:
李子航(1996—),男,硕士研究生,基金资助:
CLC Number:
Zihang LI, Zhanbo WANG, Zheng MIAO, Xianbing JI. Working fluid selection and thermo-economic analysis of sub-critical organic Rankine cycle[J]. CIESC Journal, 2021, 72(9): 4487-4495.
李子航, 王占博, 苗政, 纪献兵. 亚临界有机朗肯循环系统工质筛选及热经济性分析[J]. 化工学报, 2021, 72(9): 4487-4495.
工质名称 | 临界温度/K | 临界压力/MPa |
---|---|---|
propane/isobutane | 369.89~407.81 | 3.63~4.33 |
propane/butane | 369.89~425.13 | 3.8~4.38 |
isobutane/isopentane | 407.81~460.35 | 3.38~3.75 |
isobutane/pentane | 407.81~469.7 | 3.37~3.82 |
butane/isopentane | 425.13~460.35 | 3.38~3.8 |
butane/pentane | 425.13~469.7 | 3.37~3.81 |
isopentane/hexane | 460.35~507.82 | 3.03~3.41 |
pentane/hexane | 469.7~507.82 | 3.03~3.37 |
hexane/heptane | 507.82~540.13 | 2.74~3.03 |
heptane/octane | 540.13~569.32 | 2.5~2.74 |
octane/nonane | 569.32~594.55 | 2.28~2.5 |
R142b-R245fa | 410.26~427.16 | 3.65~4.06 |
R245fa-R123 | 427.16~456.83 | 3.65~3.66 |
R123-R113 | 456.83~487.21 | 3.39~3.66 |
R113-MM | 487.21~518.7 | 1.94~3.39 |
Table 1 Fundamental parameters of alkane mixtures
工质名称 | 临界温度/K | 临界压力/MPa |
---|---|---|
propane/isobutane | 369.89~407.81 | 3.63~4.33 |
propane/butane | 369.89~425.13 | 3.8~4.38 |
isobutane/isopentane | 407.81~460.35 | 3.38~3.75 |
isobutane/pentane | 407.81~469.7 | 3.37~3.82 |
butane/isopentane | 425.13~460.35 | 3.38~3.8 |
butane/pentane | 425.13~469.7 | 3.37~3.81 |
isopentane/hexane | 460.35~507.82 | 3.03~3.41 |
pentane/hexane | 469.7~507.82 | 3.03~3.37 |
hexane/heptane | 507.82~540.13 | 2.74~3.03 |
heptane/octane | 540.13~569.32 | 2.5~2.74 |
octane/nonane | 569.32~594.55 | 2.28~2.5 |
R142b-R245fa | 410.26~427.16 | 3.65~4.06 |
R245fa-R123 | 427.16~456.83 | 3.65~3.66 |
R123-R113 | 456.83~487.21 | 3.39~3.66 |
R113-MM | 487.21~518.7 | 1.94~3.39 |
1 | Rahbar K, Mahmoud S, Al-Dadah R K, et al. Review of organic Rankine cycle for small-scale applications[J]. Energy Conversion and Management, 2017, 134: 135-155. |
2 | Roumpedakis T C, Loumpardis G, Monokrousou E, et al. Exergetic and economic analysis of a solar driven small scale ORC[J]. Renewable Energy, 2020, 157: 1008-1024. |
3 | Emadi M A, Chitgar N, Oyewunmi O A, et al. Working-fluid selection and thermoeconomic optimisation of a combined cycle cogeneration dual-loop organic Rankine cycle (ORC) system for solid oxide fuel cell (SOFC) waste-heat recovery[J]. Applied Energy, 2020, 261: 114384. |
4 | Cao Y, Mihardjo L W W, Dahari M, et al. Waste heat from a biomass fueled gas turbine for power generation via an ORC or compressor inlet cooling via an absorption refrigeration cycle: a thermoeconomic comparison[J]. Applied Thermal Engineering, 2021, 182: 116117. |
5 | Braimakis K, Karellas S. Integrated thermoeconomic optimization of standard and regenerative ORC for different heat source types and capacities[J]. Energy, 2017, 121: 570-598. |
6 | Feng Y Q, Hung T, Greg K, et al. Thermoeconomic comparison between pure and mixture working fluids of organic Rankine cycles (ORCs) for low temperature waste heat recovery[J]. Energy Conversion and Management, 2015, 106: 859-872. |
7 | 刘杰, 陈江平, 祁照岗. 低温有机朗肯循环的热力学分析[J]. 化工学报, 2010, 61(S2): 9-14. |
Liu J, Chen J P, Qi Z G. Thermodynamic analysis of low temperature organic Rankine cycle[J]. CIESC Journal, 2010, 61(S2): 9-14. | |
8 | Cayer E, Galanis N, Nesreddine H. Parametric study and optimization of a transcritical power cycle using a low temperature source[J]. Applied Energy, 2010, 87(4): 1349-1357. |
9 | Aljundi I H. Effect of dry hydrocarbons and critical point temperature on the efficiencies of organic Rankine cycle[J]. Renewable Energy, 2011, 36(4): 1196-1202. |
10 | Meinel D, Wieland C, Spliethoff H. Effect and comparison of different working fluids on a two-stage organic Rankine cycle (ORC) concept[J]. Applied Thermal Enginerring, 2014, 63(1): 246-253. |
11 | Edrisi B H, Michaelides E E. Effect of the working fluid on the optimum work of binary-flashing geothermal power plants[J]. Energy, 2013, 50: 389-394. |
12 | 曹宇, 王治红, 马宁, 等. 超临界二氧化碳布雷顿/有机朗肯循环联合系统的热力学特性[J]. 热能动力工程, 2020, 35(4): 9-15, 23. |
Cao Y, Wang Z H, Ma N, et al. Thermodynamic properties of supercritical CO2 brayton/organic Rankine cycle combined system[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(4): 9-15, 23. | |
13 | Tian H, Chang L W, Gao Y Y, et al. Thermo-economic analysis of zeotropic mixtures based on siloxanes for engine waste heat recovery using a dual-loop organic Rankine cycle (DORC)[J]. Energy Conversion and Management, 2017, 136: 11-26. |
14 | Mago P J, Chamra L M, Srinivasan K, et al. An examination of regenerative organic Rankine cycles using dry fluids[J]. Applied Thermal Engineering, 2008, 28(8/9): 998-1007. |
15 | Borsukiewicz-Gozdur A, Nowak W. Comparative analysis of natural and synthetic refrigerants in application to low temperature Clausius-Rankine cycle[J]. Energy, 2007, 32(4): 344-352. |
16 | 韩中合, 梅中恺, 李鹏. 中温有机朗肯循环多目标优化及工质筛选[J]. 太阳能学报, 2019, 40(10): 2739-2747. |
Han Z H, Mei Z K, Li P. Multi-objective optimization and working fluid selection for medium temperature organic Rankine cycle[J]. Acta Energiae Solaris Sinica, 2019, 40(10): 2739-2747. | |
17 | 韩中合, 梅中恺, 李鹏. 有机朗肯循环蒸发器多目标优化设计及工质筛选[J]. 动力工程学报, 2018, 38(11): 934-940. |
Han Z H, Mei Z K, Li P. Multi-objective optimization design of an evaporator for organic Rankine cycle and the working fluid selection[J]. Journal of Chinese Society of Power Engineering, 2018, 38(11): 934-940. | |
18 | 张大海, 魏新利, 孟祥睿, 等. 低温余热发电有机朗肯循环工质选择[J]. 广东化工, 2011, 38(9):152-153, 159. |
Zhang D H, Wei X L, Meng X R, et al. The fluid selection of ORC power system for energy recovery[J]. Guangdong Chemical Industry, 2011, 38(9): 152-153, 159. | |
19 | 陈超男, 罗向龙, 杨智, 等. 非共沸混合工质组分调控ORC系统热经济性分析和优化[J]. 化工学报, 2020, 71(5): 2373-2381. |
Chen C N, Luo X L, Yang Z, et al. Thermo-economic modelling and optimization of a zeotropic organic Rankine cycle with composition adjustment[J]. CIESC Journal, 2020, 71(5): 2373-2381. | |
20 | 高宏伟, 袁鹏飞, 张超, 等. 亚临界有机朗肯循环发电系统热经济性分析[J]. 天津理工大学学报, 2020, 36(1): 31-35, 59. |
Gao H W, Yuan P F, Zhang C, et al. Thermal-economic analysis of the subcritical organic Rankine cycle power generation system[J]. Journal of Tianjin University of Technology, 2020, 36(1): 31-35, 59. | |
21 | Miao Z, Zhang K, Wang M X, et al. Thermodynamic selection criteria of zeotropic mixtures for subcritical organic Rankine cycle[J]. Energy, 2019, 167:484-497. |
22 | Miao Z, Li Z H, Zhang K, et al. Selection criteria of zeotropic mixtures for subcritical organic Rankine cycle based on thermodynamic and thermo-economic analysis[J]. Applied Thermal Engineering, 2020, 180: 115837. |
23 | Xi H, Li M J, He Y L, et al. Economical evaluation and optimization of organic Rankine cycle with mixture working fluids using R245fa as flame retardant[J]. Applied Thermal Engineering, 2017, 113: 1056-1070. |
24 | Heberle F, Brüggemann D. Thermo-economic evaluation of organic Rankine cycles for geothermal power generation using zeotropic mixtures[J]. Energies, 2015, 8(3): 2097-2124. |
25 | Yang M H. Payback period investigation of the organic Rankine cycle with mixed working fluids to recover waste heat from the exhaust gas of a large marine diesel engine[J]. Energy Conversion and Management, 2018, 162:189-202. |
26 | Fang Y W, Yang F B, Zhang H G. Comparative analysis and multi-objective optimization of organic Rankine cycle (ORC) using pure working fluids and their zeotropic mixtures for diesel engine waste heat recovery[J]. Applied Thermal Engineering, 2019, 157: 113704. |
27 | Tian Z, Zeng W J, Gu B, et al. Energy, exergy, and economic (3E) analysis of an organic Rankine cycle using zeotropic mixtures based on marine engine waste heat and LNG cold energy[J]. Energy Conversion and Management, 2021, 228: 113657. |
28 | Le V L, Kheiri A, Feidt M, et al. Thermodynamic and economic optimizations of a waste heat to power plant driven by a subcritical ORC (organic Rankine cycle) using pure or zeotropic working fluid[J]. Energy, 2014, 78: 622-638. |
29 | Oyewunmi O, Markides C. Thermo-economic and heat transfer optimization of working-fluid mixtures in a low-temperature organic Rankine cycle system[J]. Energies, 2016, 9(6): 448. |
30 | Georgousopoulos S, Braimakis K, Grimekis D, et al. Thermodynamic and techno-economic assessment of pure and zeotropic fluid ORCs for waste heat recovery in a biomass IGCC plant[J]. Applied Thermal Engineering, 2021, 183: 116202. |
31 | Dong B S, Xu G Q, Li T T, et al. Thermodynamic and economic analysis of zeotropic mixtures as working fluids in low temperature organic Rankine cycles[J]. Applied Thermal Engineering, 2018, 132: 545-553. |
32 | Kazemi N, Samadi F. Thermodynamic, economic and thermo-economic optimization of a new proposed organic Rankine cycle for energy production from geothermal resources[J]. Energy Conversion and Management, 2016, 121: 391-401. |
33 | Zhang S J, Wang H X, Guo T. Performance comparison and parametric optimization of subcritical organic Rankine cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation[J]. Applied Energy, 2011, 88(8): 2740-2754. |
34 | Wu Y D, Zhu Y D, Yu L J. Thermal and economic performance analysis of zeotropic mixtures for organic Rankine cycles[J]. Applied Thermal Engineering, 2016, 96: 57-63. |
35 | Kolahi M, Yari M, Mahmoudi S M S, et al. Thermodynamic and economic performance improvement of ORCs through using zeotropic mixtures: case of waste heat recovery in an offshore platform[J]. Case Studies in Thermal Engineering, 2016, 8: 51-70. |
36 | Radulovic J, Beleno Castaneda N I. On the potential of zeotropic mixtures in supercritical ORC powered by geothermal energy source[J]. Energy Conversion and Management, 2014, 88: 365-371. |
37 | Miao Z, Yang X F, Xu J L, et al. Development and dynamic characteristics of an organic Rankine cycle[J]. Chinese Science Bulletin, 2014, 59(33): 4367-4378. |
38 | Maraver D, Royo J, Lemort V, et al. Systematic optimization of subcritical and transcritical organic Rankine cycles (ORCs) constrained by technical parameters in multiple applications[J]. Applied Energy, 2014, 117: 11-29. |
39 | Gnielinski V. New equations for heat and mass transfer in the turbulent flow in pipes and channels[J]. NASA STI/Recon Technical Report A, 1975, 41(1): 8-16. |
40 | Gungor K E, Winterton R H S. Simplified general correlation for saturated boiling and comparisons of correlation with data[J]. Chemical Engineering Research and Design, 1987, 65: 254-260. |
41 | Shah M M. An improved and extended general correlation for heat transfer during condensation in plain tubes[J]. HVAC & R Research, 2009, 15(5): 889-913. |
42 | Kern D Q. Process Heat Transfer[M]. New York: McGraw-Hill, 1950. |
43 | Turton R, Bailie R C, Whiting W B, et al. Analysis, Synthesis, and Design of Chemical Processes[M]. 4th ed. Englewood: Prentice Hall, 2012: 225-232. |
[1] | Yurong DANG, Chunlan MO, Kerui SHI, Yingcong FANG, Ziyang ZHANG, Zuoshun LI. Comprehensive evaluation model combined with genetic algorithm for the study on the performance of ORC system with zeotropic mixture [J]. CIESC Journal, 2023, 74(5): 1884-1895. |
[2] | NI Yuan, ZHAO Liangju, LIU Chao, MO Yili. Recovery of waste heat of low-temperature flue gas by parametric optimization on organic Rankine cycle with non-azeotropic mixtures [J]. CIESC Journal, 2013, 64(11): 3985-3992. |
Viewed | ||||||||||||||||||||||||||||||||||
Full text 596
|
|
|||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||