CIESC Journal ›› 2021, Vol. 72 ›› Issue (9): 4496-4503.DOI: 10.11949/0438-1157.20210215
• Thermodynamics • Previous Articles Next Articles
Shenggui MA1,2,3(),Bowen TIAN1,Yuwei ZHOU1,Lin CHEN1,Xia JIANG1,2,3(
),Tao GAO4
Received:
2021-02-04
Revised:
2021-05-11
Online:
2021-09-05
Published:
2021-09-05
Contact:
Xia JIANG
马生贵1,2,3(),田博文1,周雨薇1,陈琳1,江霞1,2,3(
),高涛4
通讯作者:
江霞
作者简介:
马生贵(1990—),男,博士,助理研究员,基金资助:
CLC Number:
Shenggui MA, Bowen TIAN, Yuwei ZHOU, Lin CHEN, Xia JIANG, Tao GAO. DFT study of adsorption of H2S on N-doped Stone-Wales defected graphene[J]. CIESC Journal, 2021, 72(9): 4496-4503.
马生贵, 田博文, 周雨薇, 陈琳, 江霞, 高涛. 氮掺杂Stone-Wales缺陷石墨烯吸附H2S的密度泛函理论研究[J]. 化工学报, 2021, 72(9): 4496-4503.
Fig.2 The top view optimized geometric structures of SW defected graphene (Top, Bridge, Hollow-5 and Hollow-7 are the adsorption sites of H2S, number 1—5 are the doping sites of N atom)
H2S分子初始构型的几何方向 | 吸附位点 | 吸附能/eV |
---|---|---|
H-S键平行于石墨烯表面 | Top | -0.40 |
Hollow-5 | -0.15 | |
Hollow-7 | -0.14 | |
Bridge | -0.17 | |
硫原子朝向石墨烯 | Top | -0.35 |
Hollow-5 | -0.51 | |
Hollow-7 | -0.13 | |
Bridge | -0.35 | |
氢原子朝向石墨烯 | Top | -0.15 |
Hollow-5 | -0.16 | |
Hollow-7 | -0.15 | |
Bridge | -0.14 |
Table 1 Adsorption energies of H2S molecules adsorbed on the SW defected graphene
H2S分子初始构型的几何方向 | 吸附位点 | 吸附能/eV |
---|---|---|
H-S键平行于石墨烯表面 | Top | -0.40 |
Hollow-5 | -0.15 | |
Hollow-7 | -0.14 | |
Bridge | -0.17 | |
硫原子朝向石墨烯 | Top | -0.35 |
Hollow-5 | -0.51 | |
Hollow-7 | -0.13 | |
Bridge | -0.35 | |
氢原子朝向石墨烯 | Top | -0.15 |
Hollow-5 | -0.16 | |
Hollow-7 | -0.15 | |
Bridge | -0.14 |
Fig.3 The most stable structures of H2S molecules adsorbed on the SW defected graphene at three adsorption sites: (a) side and top view of the adsorption structure at Top site; (b) side and top view of the adsorption structure at Hollow-5 site; (c) side and top view of the adsorption structure at Bridge site
原子 | 序号 | 吸附前电荷量/e | 吸附后电荷量/e | 转移电荷量/e |
---|---|---|---|---|
C | 1 | +0.005 | +0.022 | +0.017 |
2 | -0.079 | -0.012 | +0.067 | |
3 | -0.038 | -0.040 | -0.002 | |
4 | +0.180 | +0.046 | -0.134 | |
5 | +0.042 | -0.071 | -0.113 | |
S | — | — | +0.049 | +0.049 |
H | 1 | — | -0.010 | -0.010 |
2 | — | -0.021 | -0.021 |
Table 2 Bader atomic charges of the S-Hollow-5 adsorption system
原子 | 序号 | 吸附前电荷量/e | 吸附后电荷量/e | 转移电荷量/e |
---|---|---|---|---|
C | 1 | +0.005 | +0.022 | +0.017 |
2 | -0.079 | -0.012 | +0.067 | |
3 | -0.038 | -0.040 | -0.002 | |
4 | +0.180 | +0.046 | -0.134 | |
5 | +0.042 | -0.071 | -0.113 | |
S | — | — | +0.049 | +0.049 |
H | 1 | — | -0.010 | -0.010 |
2 | — | -0.021 | -0.021 |
氮掺杂位点 | Ef /eV |
---|---|
1 | 2.94 |
2 | 3.14 |
3 | 3.93 |
4 | 3.75 |
5 | 2.72 |
Table 3 Formation energies of N doped SW defected graphene
氮掺杂位点 | Ef /eV |
---|---|
1 | 2.94 |
2 | 3.14 |
3 | 3.93 |
4 | 3.75 |
5 | 2.72 |
Fig.6 The stable structures of three adsorption systems of H2S molecules adsorbed on the N doped SW defected graphene: (a) side and top view of the adsorption structure of S-H system; (b) side and top view of the adsorption structure of S-T system; (c) side and top view of the adsorption structure of H-H system
吸附构型 | Eads /eV |
---|---|
S-T | -0.60 |
S-H | -0.56 |
H-H | -0.65 |
Table 4 Adsorption energies of H2S molecules adsorbed on the N doped SW defected graphene
吸附构型 | Eads /eV |
---|---|
S-T | -0.60 |
S-H | -0.56 |
H-H | -0.65 |
原子 | 序号 | 吸附前电荷量/e | 吸附后电荷量/e | 转移电荷量/e |
---|---|---|---|---|
C | 1 | +0.512 | +0.512 | 0 |
2 | +0.339 | +0.339 | 0 | |
3 | -0.101 | -0.105 | -0.004 | |
4 | +0.015 | +0.006 | -0.009 | |
N | — | -1.283 | -1.283 | 0 |
S | — | — | -0.076 | -0.076 |
H | 1 | — | +0.053 | +0.053 |
2 | — | +0.051 | +0.051 |
Table 5 Bader atomic charges of the H-H adsorption system
原子 | 序号 | 吸附前电荷量/e | 吸附后电荷量/e | 转移电荷量/e |
---|---|---|---|---|
C | 1 | +0.512 | +0.512 | 0 |
2 | +0.339 | +0.339 | 0 | |
3 | -0.101 | -0.105 | -0.004 | |
4 | +0.015 | +0.006 | -0.009 | |
N | — | -1.283 | -1.283 | 0 |
S | — | — | -0.076 | -0.076 |
H | 1 | — | +0.053 | +0.053 |
2 | — | +0.051 | +0.051 |
1 | 谢乐, 蒋崇文. 生物滴滤塔去除高浓度H2S废气的模拟研究[J]. 化工学报, 2021, 72(8): 4346-4353. |
Xie L, Jiang C W. Simulation study on the removal of high concentration H2S waste gas by biotrickling filter[J]. CIESC Journal, 2021, 72(8): 4346-4353. | |
2 | 张敏, 李涛, 陈曙旸, 等. 我国硫化氢中毒的特点与控制对策[J]. 工业卫生与职业病, 2005, 31(1): 12-14. |
Zhang M, Li T, Chen S Y, et al. Characteristics and control measures of hydrogen sulfide poisoning in China [J]. Industrial Health and Occupational Diseases, 2005, 31(1): 12-14. | |
3 | 杨嫱, 董小刚, 贺雪红, 等. 油田硫化氢腐蚀原因及防护措施[J]. 化工设计通讯, 2019, 45(8): 45-46. |
Yang Q, Dong X G, He X H, et al. Causes and protective measures of hydrogen sulfide in oil fields[J]. Chemical Engineering Design Communications, 2019, 45(8): 45-46. | |
4 | 杨振宇. 关于硫化氢废气处理新方法研究[J]. 节能与环保, 2019 (7): 75-77. |
Yang Z Y. Study on new treatment method of hydrogen sulfide waste gas[J]. Energy Conservation & Environmental Protection,2019 (7): 75-77. | |
5 | Bagreev A, Bandosz T J. H2S adsorption/oxidation on unmodified activated carbons: importance of prehumidification[J]. Carbon, 2001, 39(15): 2303-2311. |
6 | Adib F, Bagreev A, Bandosz T J. Adsorption/oxidation of hydrogen sulfide on nitrogen-containing activated carbons[J]. Langmuir, 2000, 16(4): 1980-1986. |
7 | Yang W J, Gao Z Y, Liu X S, et al. Single-atom iron catalyst with single-vacancy graphene-based substrate as a novel catalyst for NO oxidation: a theoretical study[J]. Catalysis Science & Technology, 2018, 8(16): 4159-4168. |
8 | Tetlow H, Posthuma de Boer J, Ford I J, et al. Growth of epitaxial graphene: theory and experiment[J]. Physics Reports, 2014, 542(3): 195-295. |
9 | 张慧娟. SO2和NO在石墨烯氧化物上吸附氧化的第一性原理研究[D]. 昆明: 昆明理工大学, 2015. |
Zhang H J. A first principles study of adsorption and oxidation of SO2 and NO by graphene oxides[D]. Kunming: Kunming University of Science and Technology, 2015. | |
10 | Zhou Q X, Fu Z B, Tang Y J, et al. First-principle study of the transition-metal adatoms on B-doped vacancy-defected graphene[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 60: 133-138. |
11 | Ye X, Ma S G, Jiang X, et al. The adsorption of acidic gaseous pollutants on metal and nonmetallic surface studied by first-principles calculation: a review[J]. Chinese Chemical Letters, 2019, 30(12): 2123-2131. |
12 | Gao Z Y, Yang W J, Ding X L, et al. Support effects on adsorption and catalytic activation of O2 in single atom iron catalysts with graphene-based substrates[J]. Physical Chemistry Chemical Physics: PCCP, 2018, 20(10): 7333-7341. |
13 | Hohenberg P, Kohn W. Inhomogeneous electron gas[J]. Physical Review, 1964, 136(3B): b864. |
14 | Mineva T, Krishnamurty S, Salahub D R, et al. Temperature dependence of the molecular conformations of dilauroyl phosphatidylcholine: a density functional study[J]. International Journal of Quantum Chemistry, 2013, 113(5): 631-636. |
15 | Sham L J, Kohn W. One-particle properties of an inhomogeneous interacting electron gas[J]. Physical Review, 1966, 145(2): 561. |
16 | Leenaerts O, Partoens B, Peeters F M. Adsorption of H2O, NH3, CO, NO2, and NO on graphene: a first-principles study[J]. Physical Review B, 2008, 77(12): 125416. |
17 | Lazar P, Karlický F, Jurečka P, et al. Adsorption of small organic molecules on graphene[J]. Journal of the American Chemical Society, 2013, 135(16): 6372-6377. |
18 | Ambrusi R E, Luna C R, Juan A, et al. DFT study of Rh-decorated pristine, B-doped and vacancy defected graphene for hydrogen adsorption[J]. RSC Advances, 2016, 6(87): 83926-83941. |
19 | Yang W J, Gao Z Y, Liu X S, et al. Directly catalytic reduction of NO without NH3 by single atom iron catalyst: a DFT calculation[J]. Fuel, 2019, 243: 262-270. |
20 | Zhou Q X, Wang C Y, Fu Z B, et al. Adsorption of formaldehyde molecule on Stone-Wales defected graphene doped with Cr, Mn, and Co: a theoretical study[J]. Computational Materials Science, 2014, 83: 398-402. |
21 | 刘笑涵. 石墨烯气体传感器吸附CO和CO2性能研究[D]. 西安: 西安电子科技大学, 2019. |
Liu X H. Study for adsorption of CO and CO2 on graphene gas sensor[D]. Xi'an: Xidian University, 2019. | |
22 | Dai J Y, Yuan J M, Giannozzi P. Gas adsorption on graphene doped with B, N, Al, and S: a theoretical study[J]. Applied Physics Letters, 2009, 95(23): 232105. |
23 | Jia X T, Zhang H, Zhang Z M, et al. Effect of doping and vacancy defects on the adsorption of CO on graphene[J]. Materials Chemistry and Physics, 2020, 249: 123114. |
24 | Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15-50. |
25 | Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review. B, Condensed Matter, 1996, 54(16): 11169-11186. |
26 | Kresse G, Hafner J. Ab initio molecular dynamics for open-shell transition metals[J]. Physical Review. B, Condensed Matter, 1993, 48(17): 13115-13118. |
27 | Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. |
28 | Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59(3): 1758. |
29 | Goerigk L, Grimme S. A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions[J]. Physical Chemistry Chemical Physics, 2011, 13(14): 6670-6688. |
30 | Zhang H P, Luo X G, Song H T, et al. DFT study of adsorption and dissociation behavior of H2S on Fe-doped graphene[J]. Applied Surface Science, 2014, 317: 511-516. |
[1] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[2] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[3] | Hao GU, Fujian ZHANG, Zhen LIU, Wenxuan ZHOU, Peng ZHANG, Zhongqiang ZHANG. Desalination performance and mechanism of porous graphene membrane in temporal dimension under mechanical-electrical coupling [J]. CIESC Journal, 2023, 74(5): 2067-2074. |
[4] | Yingxi DANG, Peng TAN, Xiaoqin LIU, Linbing SUN. Temperature swing for CO2 capture driven by radiative cooling and solar heating [J]. CIESC Journal, 2023, 74(1): 469-478. |
[5] | Houchuan YU, Teng REN, Ning ZHANG, Xiaobin JIANG, Yan DAI, Xiaopeng ZHANG, Junjiang BAO, Gaohong HE. Advances in two-dimensional graphene oxide membrane for ion selective transport [J]. CIESC Journal, 2023, 74(1): 303-312. |
[6] | Shuang HAN, Nan ZHANG, Hui WANG, Xuan ZHANG, Jinluan YANG, Manlin ZHANG, Zhichao ZHANG. Preparation and application of chlortetracycline electrochemical sensor based on molecularly imprinting technique [J]. CIESC Journal, 2022, 73(8): 3758-3767. |
[7] | Kai HUANG, Sijie WANG, Haiping SU, Cheng LIAN, Honglai LIU. First principle study on inhibition of lithium dendrites growth by regulating graphene layer spacings [J]. CIESC Journal, 2022, 73(8): 3501-3510. |
[8] | Hongchao LIU, Suhang CHEN, Xianli DUAN, Fan WU, Xiaofei XU, Xianyu SONG, Shuangliang ZHAO, Honglai LIU. Transport behavior of Janus graphene quantum dots in biomembrane: a molecular dynamics simulation [J]. CIESC Journal, 2022, 73(7): 2835-2843. |
[9] | Zhichao LI, Yu ZHENG, Runnan ZHANG, Zhongyi JIANG. Research progress of high flux and antifouling graphene oxide membranes [J]. CIESC Journal, 2022, 73(6): 2370-2380. |
[10] | Miao ZHANG, Honghai YANG, Yong YIN, Yue XU, Junjie SHEN, Xincheng LU, Weigang SHI, Jun WANG. Start-up and heat transfer characteristics of a pulsating heat pipe with graphene oxide nanofluids [J]. CIESC Journal, 2022, 73(3): 1136-1146. |
[11] | Xuemei CHEN, Tong WANG, Yubo GAO, Dingcheng PENG, Yuting LUO. Efficient solar interfacial evaporation using laser-induced graphene [J]. CIESC Journal, 2022, 73(12): 5648-5659. |
[12] | Huan XU, Lyu KE, Shenghui ZHANG, Zilin ZHANG, Guangdong HAN, Jinsheng CUI, Daoyuan TANG, Donghui HUANG, Jiefeng GAO, Xinjian HE. Upgrading dispersion and interfacial morphologies for thermally conductive polypropylene composites by in situ growth of carbon nanotubes at graphene oxide [J]. CIESC Journal, 2022, 73(11): 5150-5157. |
[13] | HAN Wei, ZHAN Jun, SHI Hong, ZHAO Dong, CAI Shaojun, PENG Xianghong, XIAO Biao, GAO Yu. Synthesis and properties of nitrogen and sulfur codoped graphene quantum dots [J]. CIESC Journal, 2021, 72(S1): 530-538. |
[14] | Yuming LI, Ziye LIU, Qiyang ZHANG, Yajun WANG, Guoqing CUI, Guiyuan JIANG, Dehua HE. Preparation of nitrogen-doped carbon materials and their applications in catalysis [J]. CIESC Journal, 2021, 72(8): 3919-3932. |
[15] | XIA Dong, HUANG Peng, LI Heng. Joule-heating studies of electrically conducting three-dimensional graphene aerogels prepared by hydrothermal assembly [J]. CIESC Journal, 2021, 72(7): 3839-3848. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 1039
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 604
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||