CIESC Journal ›› 2022, Vol. 73 ›› Issue (3): 1083-1092.DOI: 10.11949/0438-1157.20211107
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Guodong ZHONG1(),Chaohe DENG1,Yang WANG1,Jiayun WANG1(),Ruzhu WANG2
Received:
2021-08-09
Revised:
2022-01-03
Online:
2022-03-14
Published:
2022-03-15
Contact:
Jiayun WANG
通讯作者:
王佳韵
作者简介:
钟国栋(1996—),男,硕士研究生,基金资助:
CLC Number:
Guodong ZHONG, Chaohe DENG, Yang WANG, Jiayun WANG, Ruzhu WANG. Numerical simulation and verification of heat and mass transfer characteristics in honeycomb hydrogel adsorption bed[J]. CIESC Journal, 2022, 73(3): 1083-1092.
钟国栋, 邓超和, 王洋, 王佳韵, 王如竹. 蜂窝状水凝胶吸附床传热传质特性数值模拟及验证[J]. 化工学报, 2022, 73(3): 1083-1092.
Add to citation manager EndNote|Ris|BibTeX
材料 | 热导率/(W/(m·K)) | 密度/ (kg/m3) | 比定压热容/ (kJ/(kg·K)) | 吸附热/(kJ/kg) | 水分扩散系数/(m2/s) |
---|---|---|---|---|---|
PAM-LiCl | 0.4 | 1424.6 | 1600 | 2400 | 1.75×10-10 |
空气 | 0.0263 | 1.293 | 1.005 | — | 2.82×10-5 |
Table 1 Thermophysical properties of adsorbent and air
材料 | 热导率/(W/(m·K)) | 密度/ (kg/m3) | 比定压热容/ (kJ/(kg·K)) | 吸附热/(kJ/kg) | 水分扩散系数/(m2/s) |
---|---|---|---|---|---|
PAM-LiCl | 0.4 | 1424.6 | 1600 | 2400 | 1.75×10-10 |
空气 | 0.0263 | 1.293 | 1.005 | — | 2.82×10-5 |
Section | ΔF/(kJ/kg) | Correlation curves | R2 |
---|---|---|---|
Ⅰ | 35.4-300.5 | 0.9976 | |
Ⅱ | 300.5-307.2 | 0.98503 | |
Ⅲ | 307.2-600 | 0.95296 |
Table 2 Parameters of fitting equations for PAM-LiCl
Section | ΔF/(kJ/kg) | Correlation curves | R2 |
---|---|---|---|
Ⅰ | 35.4-300.5 | 0.9976 | |
Ⅱ | 300.5-307.2 | 0.98503 | |
Ⅲ | 307.2-600 | 0.95296 |
孔径/mm | 孔体积/mm3 | 吸附剂体积/mm3 | 孔隙度/% |
---|---|---|---|
0 | 0 | 12500 | 0 |
3.57 | 1250 | 11250 | 10 |
5 | 2454 | 10046 | 20 |
6.18 | 3750 | 8750 | 30 |
7.14 | 5000 | 7500 | 40 |
Table 3 Porosity corresponding to different pore sizes
孔径/mm | 孔体积/mm3 | 吸附剂体积/mm3 | 孔隙度/% |
---|---|---|---|
0 | 0 | 12500 | 0 |
3.57 | 1250 | 11250 | 10 |
5 | 2454 | 10046 | 20 |
6.18 | 3750 | 8750 | 30 |
7.14 | 5000 | 7500 | 40 |
1 | Mekonnen M M, Hoekstra A Y. Four billion people facing severe water scarcity[J]. Science Advances, 2016, 2(2): e1500323. |
2 | Funk C. We thought trouble was coming[J]. Nature, 2011, 476(7358): 7. |
3 | Beysens D. Estimating dew yield worldwide from a few meteo data[J]. Atmospheric Research, 2016, 167: 146-155. |
4 | Pan Z, Pitt W G, Zhang Y M, et al. The upside-down water collection system of Syntrichia caninervis [J]. Nature Plants, 2016, 2: 16076. |
5 | Bergmair D, Metz S J, de Lange H C, et al. System analysis of membrane facilitated water generation from air humidity[J]. Desalination, 2014, 339: 26-33. |
6 | Gordeeva L G, Solovyeva M V, Sapienza A, et al. Potable water extraction from the atmosphere: potential of MOFs[J]. Renewable Energy, 2020, 148: 72-80. |
7 | Kim H, Yang S, Rao S R, et al. Water harvesting from air with metal-organic frameworks powered by natural sunlight[J]. Science (New York, N.Y.), 2017, 356(6336): 430-434. |
8 | Ejeian M, Wang R Z. Adsorption-based atmospheric water harvesting[J]. Joule, 2021, 5(7): 1678-1703. |
9 | Narayanan S, Li X S, Kim H, et al. Recent advances in adsorption-based heating and cooling systems[J]. Annual Review of Heat Transfer, 2016, 19(1): 199-239. |
10 | Rieth A J, Wright A M, Skorupskii G, et al. Record-setting sorbents for reversible water uptake by systematic anion exchanges in metal–organic frameworks[J]. Journal of the American Chemical Society, 2019, 141(35): 13858-13866. |
11 | Wang J Y, Wang R Z, Wang L W. Water vapor sorption performance of ACF-CaCl2 and silica gel-CaCl2 composite adsorbents[J]. Applied Thermal Engineering, 2016, 100: 893-901. |
12 | 高娇, 王丽伟, 周志松, 等. 多盐复合吸附剂的非平衡吸附/解吸特性[J]. 化工学报, 2016, 67: 184-190. |
Gao J, Wang L W, Zhou Z S, et al. Non-equilibrium sorption/desorption performance of composite multi-salt sorbent[J]. CIESC Journal, 2016, 67: 184-190. | |
13 | 刘金亚, 王佳韵, 王丽伟, 等. 一种吸附式空气取水装置的性能实验[J]. 化工学报, 2016, 67: 46-50. |
Liu J Y, Wang J Y, Wang L W, et al. Performance test of sorption air-to-water device[J]. CIESC Journal, 2016, 67: 46-50. | |
14 | Narayanan S, Kim H, Umans A, et al. A thermophysical battery for storage-based climate control[J]. Applied Energy, 2017, 189: 31-43. |
15 | Kim H, Rao S R, Kapustin E A, et al. Adsorption-based atmospheric water harvesting device for arid climates[J]. Nature Communications, 2018, 9: 1191. |
16 | 邓超和, 王佳韵, 李金凤, 等. 可低温驱动的凝胶复合吸附剂的制备及吸/脱附性能研究[J]. 化工学报, 2021, 72(8): 4401-4409. |
Deng C H, Wang J Y, Li J F, et al. Preparation and adsorption/desorption performance of hydrogel-based composite sorbent driven by low-temperature[J]. CIESC Journal, 2021, 72(8): 4401-4409. | |
17 | Hassan H Z, Mohamad A A, Alyousef Y, et al. A review on the equations of state for the working pairs used in adsorption cooling systems[J]. Renewable and Sustainable Energy Reviews, 2015, 45: 600-609. |
18 | Poulikakos D, Bejan A. Unsteady natural convection in a porous layer[J]. The Physics of Fluids, 1983, 26(5): 1183-1191. |
19 | Cho S H, Kim J N. Modeling of a silica gel/water adsorption-cooling system[J]. Energy, 1992, 17(9): 829-839. |
20 | 余楠. 三相吸附储热循环的原理及实验验证[D]. 上海: 上海交通大学, 2015. |
Yu N. Principle and experimental verification of a three-phase sorption cycle for thermal energy storage[D]. Shanghai: Shanghai Jiaotong University, 2015. | |
21 | Kim H, Rao S R, LaPotin A, et al. Thermodynamic analysis and optimization of adsorption-based atmospheric water harvesting[J]. International Journal of Heat and Mass Transfer, 2020, 161: 120253. |
22 | Narayanan S, Yang S, Kim H, et al. Optimization of adsorption processes for climate control and thermal energy storage[J]. International Journal of Heat and Mass Transfer, 2014, 77: 288-300. |
23 | Vivekh P, Bui D T, Kumja M, et al. Theoretical performance analysis of silica gel and composite polymer desiccant coated heat exchangers based on a CFD approach[J]. Energy Conversion and Management, 2019, 187: 423-446. |
24 | Solmuş İ, Yamalı C, Yıldırım C, et al. Transient behavior of a cylindrical adsorbent bed during the adsorption process[J]. Applied Energy, 2015, 142: 115-124. |
25 | Sun L M, Ben Amar N, Meunier F. Numerical study on coupled heat and mass transfers in an absorber with external fluid heating[J]. Heat Recovery Systems and CHP, 1995, 15(1): 19-29. |
26 | Solmuş İ, Rees D A S, Yamalı C, et al. A two-energy equation model for dynamic heat and mass transfer in an adsorbent bed using silica gel/water pair[J]. International Journal of Heat and Mass Transfer, 2012, 55(19/20): 5275-5288. |
27 | Yaïci W, Entchev E. Coupled unsteady computational fluid dynamics with heat and mass transfer analysis of a solar/heat-powered adsorption cooling system for use in buildings[J]. International Journal of Heat and Mass Transfer, 2019, 144: 118648. |
28 | Zhao F, Zhou X Y, Liu Y, et al. Super moisture-absorbent gels for all-weather atmospheric water harvesting[J]. Advanced Materials, 2019, 31(10): 1806446. |
29 | 张霞, 荆妙蕾. PAM水凝胶制备及溶胀性能研究[J]. 天津纺织科技, 2017(4): 51-54. |
Zhang X, Jing M L. Preparation of porous PAM hydrogel and their swelling properties research[J]. Tianjin Textile Science & Technology, 2017(4): 51-54. | |
30 | Sircar S, Hufton J R. Why does the linear driving force model for adsorption kinetics work? [J]. Adsorption, 2000, 6(2): 137-147. |
31 | Xie X, Li D Y, Tsai T H, et al. Thermal conductivity, heat capacity, and elastic constants of water-soluble polymers and polymer blends[J]. Macromolecules, 2016, 49(3): 972-978. |
32 | Laurati M, Sotta P, Long D R, et al. Dynamics of water absorbed in polyamides[J]. Macromolecules, 2012, 45(3): 1676-1687. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||