CIESC Journal ›› 2021, Vol. 72 ›› Issue (12): 5893-5903.DOI: 10.11949/0438-1157.20211468
• Reviews and monographs • Previous Articles Next Articles
Bing ZHU1,2,3(),Dingjiang CHEN1,2,3,Meng JIANG1,Yucheng REN1,Yuheng CAO1,Wenji ZHOU4,Shanying HU1,2,3,Yong JIN1,2,3()
Received:
2021-10-13
Revised:
2021-11-12
Online:
2021-12-22
Published:
2021-12-05
Contact:
Yong JIN
朱兵1,2,3(),陈定江1,2,3,蒋萌1,任钰成1,曹煜恒1,周文戟4,胡山鹰1,2,3,金涌1,2,3()
通讯作者:
金涌
作者简介:
朱兵(1967—),男,博士,教授,基金资助:
CLC Number:
Bing ZHU,Dingjiang CHEN,Meng JIANG,Yucheng REN,Yuheng CAO,Wenji ZHOU,Shanying HU,Yong JIN. Key role of chemical engineering in transition to low-carbon development in perspective of the linkage between resource utilization and carbon emissions[J]. CIESC Journal, 2021, 72(12): 5893-5903.
朱兵,陈定江,蒋萌,任钰成,曹煜恒,周文戟,胡山鹰,金涌. 化学工程在低碳发展转型中的关键作用探讨——从物质资源利用与碳排放关联的视角[J]. 化工学报, 2021, 72(12): 5893-5903.
Add to citation manager EndNote|Ris|BibTeX
93 | Kim J, Sen S M, Maravelias C T. An optimization-based assessment framework for biomass-to-fuel conversion strategies[J]. Energy & Environmental Science, 2013, 6(4): 1093-1104. |
94 | Corma A, Iborra S, Velty A. Chemical routes for the transformation of biomass into chemicals[J]. Chemical Reviews, 2007, 107(6): 2411-2502. |
1 | 中共中央国务院关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见[N]. 人民日报, 2021-10-25(1). |
2 | 何建坤. 全球低碳化转型与中国的应对战略[J]. 气候变化研究进展, 2016, 12(5): 357-365. |
He J K. Global low-carbon transition and China's response strategies[J]. Climate Change Research, 2016, 12(5): 357-365. | |
3 | 何建坤. 全球气候治理新机制与中国经济的低碳转型[J]. 武汉大学学报(哲学社会科学版), 2016, 69(4): 5-12. |
He J K. New governance mechanism for global climate change and China's economic low-carbon transformation[J]. Wuhan University Journal (Philosophy & Social Sciences), 2016, 69(4): 5-12. | |
4 | 刘俊伶, 夏侯沁蕊, 王克, 等. 中国工业部门中长期低碳发展路径研究[J]. 中国软科学, 2019(11): 31-41, 54. |
Liu J L, Xiahou Q R, Wang K, et al. Study on mid- and long-term low carbon development pathway of China's industry sector[J]. China Soft Science, 2019(11): 31-41, 54. | |
5 | 李平. 社会-技术范式视角下的低碳转型[J]. 科学学研究, 2018, 36(6): 1000-1007. |
Li P. On low carbon transition from perspective of socio-technical regime[J]. Studies in Science of Science, 2018, 36(6): 1000-1007. | |
6 | 马丽梅, 史丹, 裴庆冰. 中国能源低碳转型(2015—2050): 可再生能源发展与可行路径[J]. 中国人口·资源与环境, 2018, 28(2): 8-18. |
Ma L M, Shi D, Pei Q B. Low-carbon transformation of China's energy in 2015―2050: renewable energy development and feasible path[J]. China Population, Resources and Environment, 2018, 28(2): 8-18. | |
7 | 陈诗一. 中国各地区低碳经济转型进程评估[J]. 经济研究, 2012, 47(8): 32-44. |
Chen S Y. Evaluation of low carbon transformation process for Chinese provinces[J]. Economic Research Journal, 2012, 47(8): 32-44. | |
8 | 赵新刚, 梁吉, 任领志, 等. 能源低碳转型的顶层制度设计: 可再生能源配额制[J]. 电网技术, 2018, 42(4): 1164-1169. |
Zhao X G, Liang J, Ren L Z, et al. Top-level institutional design for energy low-carbon transition: renewable portfolio standards[J]. Power System Technology, 2018, 42(4): 1164-1169. | |
9 | International Resource Panel. Global resource outlook 2019: natural resources for the future we want[R]. Nairobi: United Nations Environment Programme, 2019. |
10 | Ellen Macarthur Foundation. Completing the picture: how the crcular economy tackles climate change[R]. Cowes: EMF, 2019. |
11 | International Resource Panel. Resource efficiency and climate change: material efficiency strategies for a low-carbon future[R]. Nairobi: United Nations Environment Programme, 2020. |
12 | Economics Material. The circular economy: a powerful force for climate mitigation[R]. Stockholm: Material Economics, 2018. |
13 | American Institute of Chemical Engineers. Body of knowledge for chemical engineers[R]. New York: AIChE, 2015. |
14 | 金涌. 探索化学化工未来世界——值得为之付出一生(1)[M]. 北京: 清华大学出版社, 2016. |
Jin Y. Exploring the Future of the Chemical World: Worth Devoted the Whole Life (1)[M]. Beijing: Tsinghua University Press, 2016. | |
15 | Kannegiesser M. Value Chain Management in the Chemical Industry: Global Value Chain Planning of Commodities[M]. Heidelberg: Physica-Verlag, 2008: 63-92. |
16 | International Energy Agency. CO2 emissions by energy source[EB/OL]. [2021-08-31]. . |
17 | Hertwich E G. Increased carbon footprint of materials production driven by rise in investments[J]. Nature Geoscience, 2021, 14(3): 151-155. |
18 | Grandell L, Lehtilä A, Kivinen M, et al. Role of critical metals in the future markets of clean energy technologies[J]. Renewable Energy, 2016, 95: 53-62. |
19 | International Energy Agency. Renewables 2020: analysis and forecast to 2025[R]. Paris: IEA, 2020. |
20 | Wind Energy International. Global wind installations[EB/OL]. [2021-08-31]. . |
21 | International Energy Agency. Global EV outlook 2020: entering the decade of electric drive?[R]. Paris: IEA, 2020. |
22 | Vidal O, Goffé B, Arndt N. Metals for a low-carbon society[J]. Nature Geoscience, 2013, 6(11): 894-896. |
23 | Lee J, Bazilian M, Hastings-Simon S. The material foundations of a low-carbon economy[J]. One Earth, 2021, 4(3): 331-334. |
24 | Månberger A, Stenqvist B. Global metal flows in the renewable energy transition: exploring the effects of substitutes, technological mix and development[J]. Energy Policy, 2018, 119: 226-241. |
25 | International Energy Agency. Clean energy progress after the Covid-19 crisis will need reliable supplies of critical minerals[R]. Paris: IEA, 2020. |
26 | World Bank Group. Minerals for climate action: the mineral intensity of the clean energy transition[R]. Washington, DC: WBG, 2020. |
27 | Ali S H, Giurco D, Arndt N, et al. Mineral supply for sustainable development requires resource governance[J]. Nature, 2017, 543(7645): 367-372. |
28 | Akcil A, Sun Z, Panda S. COVID-19 disruptions to tech-metals supply are a wake-up call[J]. Nature, 2020, 587(7834): 365-367. |
29 | Babbitt C W, Althaf S, Cruz Rios F, et al. The role of design in circular economy solutions for critical materials[J]. One Earth, 2021, 4(3): 353-362. |
30 | 汪鹏, 王翘楚, 韩茹茹, 等. 全球关键金属-低碳能源关联研究综述及其启示[J]. 资源科学, 2021, 43(4): 669-681. |
Wang P, Wang Q C, Han R R, et al. Nexus between low-carbon energy and critical metals: literature review and implications[J]. Resources Science, 2021, 43(4): 669-681. | |
31 | Graedel T E, van der Voet E. Linkages of Sustainability[M]. MA: Mit Press Cambridge, 2010. |
32 | Graedel T E. On the future availability of the energy metals[J]. Annual Review of Materials Research, 2011, 41(1): 323-335. |
33 | Zheng X Z, Wang R R, Wood R, et al. High sensitivity of metal footprint to national GDP in part explained by capital formation[J]. Nature Geoscience, 2018, 11(4): 269-273. |
34 | Kleijn R, van der Voet E, Kramer G J, et al. Metal requirements of low-carbon power generation[J]. Energy, 2011, 36(9): 5640-5648. |
35 | Elshkaki A, Graedel T E. Dynamic analysis of the global metals flows and stocks in electricity generation technologies[J]. Journal of Cleaner Production, 2013, 59: 260-273. |
36 | 中国化工报. “双碳”目标下,化工产业风口在哪儿?[EB/OL]. [2021-05-11]. . |
China Chemical Industry News. Where is the outlet of the chemical industry under the ‘double carbon' goal?[EB/OL]. [2021-05-11]. . | |
37 | Velenturf A P M, Purnell P, Jensen P D. Reducing material criticality through circular business models: challenges in renewable energy[J]. One Earth, 2021, 4(3): 350-352. |
38 | Lee J, Bazilian M, Sovacool B, et al. Reviewing the material and metal security of low-carbon energy transitions[J]. Renewable and Sustainable Energy Reviews, 2020, 124: 109789. |
39 | de Koning A, Kleijn R, Huppes G, et al. Metal supply constraints for a low-carbon economy? [J]. Resources, Conservation and Recycling, 2018, 129: 202-208. |
40 | Nansai K, Mususa P, Piersiak M, et al. Sustainable opportunities for critical metals[J]. One Earth, 2021, 4(3): 327-330. |
41 | 周园园. 中国锂资源供需形势及对外依存度分析[J]. 资源与产业, 2019, 21(3): 46-50. |
95 | Centi G, van Santen R A. Catalysis for Renewables: from Feedstock to Energy Production[M]. John Wiley & Sons, 2007. |
41 | Zhou Y Y. Supply-demand situation and external dependence of China's lithium resource[J]. Resources & Industries, 2019, 21(3): 46-50. |
42 | 全国能源信息平台. 中国钠离子电池在基础研究、技术水平和产业化推进速度方面都处于国际领先地位[EB/OL]. [2020-09-18]. . |
National Energy Information Platform. China's sodium-ion battery are in an international leading position in terms of basic research, technological level and industrialization speed[EB/OL]. [2020-09-18]. . | |
43 | International Energy Agency. The Future of petrochemicals: towards a more sustainable chemical industry[R]. Paris: IEA, 2018. |
44 | Schulz K J, Deyoung J J H, Seal Ii R R, et al. Critical mineral resources of the United States—economic and environmental geology and prospects for future supply[R]. Reston, VA, 2017: 862. |
45 | 张超, 刘蓓蓓, 李楠, 等. 面向可持续发展的资源关联研究: 现状与展望[J]. 科学通报, 2021, 66(26): 3426-3440. |
Zhang C, Liu B B, Li N, et al. Resource nexus for sustainable development: status quo and prospect[J]. Chinese Science Bulletin, 2021, 66(26): 3426-3440. | |
46 | Pauliuk S, Arvesen A, Stadler K, et al. Industrial ecology in integrated assessment models[J]. Nature Climate Change, 2017, 7(1): 13-20. |
47 | Bleischwitz R, Spataru C, van deveer S D, et al. Resource nexus perspectives towards the united nations sustainable development goals[J]. Nature Sustainability, 2018, 1(12): 737-743. |
48 | Lewis S L, Maslin M A. Defining the anthropocene[J]. Nature, 2015, 519(7542): 171-180. |
49 | United Nations Development Programme. The next frontier: human development and the Anthropocene[R]. New York: UNDP, 2020. |
50 | Petroleum British. Energy outlook: 2020 edition[R]. London: BP, 2020. |
51 | Lange J P. Towards circular carbo-chemicals―the metamorphosis of petrochemicals[J]. Energy & Environmental Science, 2021, 14: 4358-4376. |
52 | 王永中. 碳达峰、碳中和目标与中国的新能源革命[J]. 人民论坛·学术前沿, 2021(14): 88-96. |
Wang Y Z. The targets of carbon peak and carbon neutralization and China's new energy revolution[J]. Frontiers, 2021(14): 88-96. | |
53 | Bennett S J, Page H. Implications of climate change for the petrochemical industry: mitigation measures and feedstock transitions[M]//Chen W Y, Suzuki T, Lackner M. Handbook of Climate Change Mitigation and Adaptation. New York: Springer, 2012: 319-357. |
54 | Energy Transitions Commission. Mission possible: reaching net-zero carbon emissions from harder-to-abate sectors by mid-century[R]. London: ETC, 2018. |
55 | International Energy Agency. From energy to chemicals[R]. Paris: IEA, 2018. |
56 | Kätelhön A, Meys R, Deutz S, et al. Climate change mitigation potential of carbon capture and utilization in the chemical industry[J]. PNAS, 2019, 116(23): 11187-11194. |
57 | Levi P G, Cullen J M. Mapping global flows of chemicals: from fossil fuel feedstocks to chemical products[J]. Environmental Science & Technology, 2018, 52(4): 1725-1734. |
58 | Mac Dowell N, Fennell P S, Shah N, et al. The role of CO2 capture and utilization in mitigating climate change[J]. Nature Climate Change, 2017, 7(4): 243-249. |
59 | Yadav V G, Yadav G D, Patankar S C. The production of fuels and chemicals in the new world: critical analysis of the choice between crude oil and biomass vis-à-vis sustainability and the environment[J]. Clean Technologies and Environmental Policy, 2020, 22(9): 1757-1774. |
60 | Ioannou I, D'angelo S C, Galán-Martín Á, et al. Process modelling and life cycle assessment coupled with experimental work to shape the future sustainable production of chemicals and fuels[J]. Reaction Chemistry & Engineering, 2021, 6: 1179-1194. |
61 | European Chemical Industry Council. Low carbon energy and feedstock for the European chemical industry[R]. Brussels: Cefic, 2017. |
62 | Zimmerman J B, Anastas P T, Erythropel H C, et al. Designing for a green chemistry future[J]. Science, 2020, 367(6476): 397-400. |
63 | 林伯强. 中国在碳中和进程中如何保障能源安全[N]. 第一财经日报, 2021-08-24(A11). |
Lin B Q. How does China ensure energy security in the process of carbon neutrality?[N]. China Business News, 2021-08-24(A11). | |
64 | Artz J, Müller T E, Thenert K, et al. Sustainable conversion of carbon dioxide: an integrated review of catalysis and life cycle assessment[J]. Chemical Reviews, 2018, 118(2): 434-504. |
65 | Neelis M L, Patel M, Gielen D J, et al. Modelling CO2 emissions from non-energy use with the non-energy use emission accounting tables (NEAT) model[J]. Resources, Conservation and Recycling, 2005, 45(3): 226-250. |
66 | 中国化工报. 《中国石油和化学工业碳达峰与碳中和宣言》发布——践行绿色发展 拥抱低碳时代[EB/OL]. [2021-01-22]. . |
China Chemical Industry News. “Carbon Peaking and Carbon Neutrality Declaration of China's Petroleum and Chemical Industry” is released: practicing green development and embracing the low-carbon era[EB/OL]. [2021-01-22]. . | |
67 | Luna P D, Hahn C, Higgins D, et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes?[J]. Science, 2019, 364(6438): eaav3506. |
68 | 么新, 朱黎阳, 王小珏, 等. “双循环”发展格局下,“碳循环经济”理念对我国能源转型的借鉴[J]. 中国能源, 2021, 43(2): 16-20. |
Yao X, Zhu L Y, Wang X J, et al. The reference of the concept of carbon circular economy in the new development paradigm to China's energy transition under the dual circulation development pattern[J]. Energy of China, 2021, 43 (2) : 16-20. | |
69 | 王国法, 任世华, 庞义辉, 等. 煤炭工业“十三五”发展成效与“双碳”目标实施路径[J]. 煤炭科学技术, 2021, 49(9): 1-8. |
Wang G F, Ren S H, Pang Y H, et al. Development achievements of China's coal industry during the 13th Five-Year Plan period and implementation path of “dual carbon” target[J]. Coal Science and Technology, 2021, 49(9): 1-8. | |
70 | 张臻烨, 胡山鹰, 金涌. 2060中国碳中和: 化石能源转向化石资源时代[J]. 现代化工, 2021, 41(6): 1-5. |
Zhang Z Y, Hu S Y, Jin Y. China achieving carbon neutral in 2060, fossil energy to fossil resource era[J]. Modern Chemical Industry, 2021, 41(6): 1-5. | |
71 | American Scientific. Plastics plants are poised to be the next big carbon superpolluters[EB/OL]. [2020-01-24]. . |
72 | International Energy Agency. Energy technology perspectives 2017[R]. Paris: IEA, 2018. |
73 | 王震, 和旭, 崔忻. “碳中和”愿景下油气企业的战略选择[J]. 油气储运, 2021, 40(6): 601-608. |
Wang Z, He X, Cui X. Strategic choice for oil and gas companies under the vision of carbon neutrality[J]. Oil & Gas Storage and Transportation, 2021, 40(6): 601-608. | |
74 | 司进. 国际石油公司碳中和战略具体行动路径比较[N]. 中国石油报, 2021-08-31(6). |
Si J. Comparison of specific action paths of international oil companies’ carbon neutral strategy[N]. China Petroleum News, 2021-08-31 (6). | |
75 | 施雷. 碳中和目标下的石油公司转型之路[J]. 当代石油石化, 2021, 29(6): 13-19. |
Shi L. Study on the road of oil company transformation under carbon neutrality target[J]. Petroleum & Petrochemical Today, 2021, 29(6): 13-19. | |
76 | FutureBridge. Oil-to-chemicals: future of refinery[EB/OL]. [2019-12-24]. . |
77 | 中国石油化工股份有限公司. 中国石化2020年年度报告[R]. 北京: 中国石化, 2021. |
China Petroleum & Chemical Corporation. Annual Report 2020 on Sinopec[R]. Beijing: Sinopec, 2021. | |
78 | Gulf Petrochemicals and Chemicals Association. How will crude oil to chemicals (COTC) reshape the global petrochemical industry[EB/OL]. [2018-08-01]. . |
79 | King Abdullah Petroleum Studies and Research Center. CCE guide overview: a guide to the circular carbon economy (CCE)[R]. Riyadh: KAPSARC, 2020. |
80 | Ignatyev I A, Thielemans W, Vander Beke B. Recycling of polymers: a review[J]. ChemSusChem, 2014, 7(6): 1579-1593. |
81 | Keijer T, Bakker V, Slootweg J C. Circular chemistry to enable a circular economy[J]. Nature Chemistry, 2019, 11(3): 190-195. |
82 | Rahimi A, García J M. Chemical recycling of waste plastics for new materials production[J]. Nature Reviews Chemistry, 2017, 1: 46. |
83 | 刘臻, 次东辉, 方薪晖, 等. 基于含碳废弃物与煤共气化的碳循环概念及碳减排潜力分析[J/OL]. 洁净煤技术, 1-9[2021-12-20]. . |
Liu Z, Ci D H, Fang X H, et al. Analysis of CO2-reduction potential by gasification for carbon neutralization [J/OL]. Clean Coal Technology, 1-9[2021-12-20]. . | |
84 | Europe Plastics. Plastics the facts 2014/2015: an analysis of European plastics production, demand and waste data[R]. Brussels: Plastic Europe, 2015. |
85 | Ragaert K, Delva L, Geem K V. Mechanical and chemical recycling of solid plastic waste[J]. Waste Management, 2017, 69: 24-58. |
86 | Meys R, Frick F, Westhues S, et al. Towards a circular economy for plastic packaging wastes—the environmental potential of chemical recycling[J]. Resources, Conservation and Recycling, 2020, 162: 105010. |
87 | Meys R, Kätelhön A, Bachmann M, et al. Achieving net-zero greenhouse gas emission plastics by a circular carbon economy[J]. Science, 2021, 374(6563): 71-76. |
88 | Iaquaniello G, Centi G, Salladini A, et al. Waste to chemicals for a circular economy[J]. Chemistry - A European Journal, 2018, 24(46): 11831-11839. |
89 | Otto A, Grube T, Schiebahn S, et al. Closing the loop: captured CO2 as a feedstock in the chemical industry[J]. Energy & Environmental Science, 2015, 8(11): 3283-3297. |
90 | 蔡博峰, 李琦, 张贤. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2021)——中国 CCUS 路径研究[R]. 生态环境部环境规划院 , 中国科学院武汉岩土力学研究所 , 中国 21世纪议程管理中心, 2021. |
Cai B F, Li Q, Zhang X. Annual Report on China's Carbon Dioxide Capture, Utilization and Storage (2021): Research on China's CCUS Path[R]. Institute of Environmental Planning, Ministry of Ecology and Environment, Wuhan Institute of Rock and Soil Mechanics, The Administrative Center for China's Agenda 21, 2021. | |
91 | Martens J A, Bogaerts A, de Kimpe N, et al. The chemical route to a carbon dioxide neutral world[J]. ChemSusChem, 2017, 10(6): 1039-1055. |
92 | 李十中. 推动新能源革命促进实现碳中和目标[J]. 人民论坛·学术前沿, 2021(14): 42-51. |
Li S Z. Promoting the new energy revolution and achieving the goal of carbon neutrality[J]. Frontiers, 2021(14): 42-51. |
[1] | Junfeng LU, Huaiyu SUN, Yanlei WANG, Hongyan HE. Molecular understanding of interfacial polarization and its effect on ionic liquid hydrogen bonds [J]. CIESC Journal, 2023, 74(9): 3665-3680. |
[2] | Renchu HE, Zhaohui ZHANG, Minglei YANG, Cong WANG, Zhenhao XI. Online optimization of gasoline blending considering carbon emissions [J]. CIESC Journal, 2023, 74(2): 818-829. |
[3] | Huimin YUN, Jianjun DAI, Hui LI, Xiaotao BI. Economic and environmental assessment of biomass coupled coal-fired power generation [J]. CIESC Journal, 2021, 72(12): 6311-6327. |
[4] | Xiaojing ZHANG,Bingbing MA,Han ZHANG,Denghui WEI,Hongli ZHANG,Hao HU,Zirui ZHAO. Comparison of the performance of Anammox process in the treatment of wastewater from different antibiotics [J]. CIESC Journal, 2021, 72(11): 5810-5819. |
[5] | Liangyi DING, Ganggang CHONG, Jiang PAN, Jianhe XU. Advances in biosynthesis of fatty acids to ω-hydroxyacids and ω-amino acids [J]. CIESC Journal, 2020, 71(9): 3919-3932. |
[6] | Shanjing YAO, Linian CAI, Dongqiang LIN. Progress in Aspergillus niger as cell factory for secretory proteins [J]. CIESC Journal, 2019, 70(10): 3690-3703. |
[7] | WU Man, SONG Aifang, ZHANG Yan, GUO Qingjie. Characteristics and trends of chemical engineering research based on bibliometric analysis of typical periodicals -Analysis on Journals of CIESC Journal, AIChE Journal, Chemical Engineering Science and Industrial & Engineering Chemistry Research [J]. CIESC Journal, 2018, 69(2): 873-884. |
[8] | ZHOU Xinggui, LI Bogeng, YUAN Xigang, LUO Guangsheng, YUAN Weikang. A revisit of chemical product engineering [J]. CIESC Journal, 2018, 69(11): 4497-4504. |
[9] | WU Yaokang, LIU Yanfeng, LI Jianghua, DU Guocheng, LIU Long, CHEN Jian. Dynamic regulation elements and their applications in microbial metabolic engineering [J]. CIESC Journal, 2018, 69(1): 272-281. |
[10] | TONG Yingjia, WU Wenjia, PENG Hui, LIU Lugang, HUANG He, JI Xiaojun. Metabolic engineering for efficient microbial production of 2,3-butanediol [J]. CIESC Journal, 2016, 67(7): 2656-2671. |
[11] | FENG Xudong, LÜ Bo, LI Chun. Advances in enzyme stability modification [J]. CIESC Journal, 2016, 67(1): 277-284. |
[12] | LIN Zhanglin, ZHANG Yan, WANG Xu, LIU Peng. Recent advances in synthetic biology [J]. CIESC Journal, 2015, 66(8): 2863-2871. |
[13] | WANG Shizhen, YAN Zhengping, QIU Longhui, FANG Baishan. Metabolic evolution of Lactobacillus pentosus for lactic acid production from raw glycerol [J]. CIESC Journal, 2015, 66(8): 3195-3203. |
[14] | ZHU Yudan, LU Xiaohua, GUO Xiaojing, LV Linghong. Preliminary discussion on scientific connotation and research method of aterial-oriented chemical engineering:understanding materials based on confined interfacial fluid behavior on mesoscale [J]. CIESC Journal, 2013, 64(1): 148-154. |
[15] | LIU Chang,LU Xiaohua,YANG Zhuhong,ZHU Yudan,FENG Xin. Leap-forward development strategy of China’s biomethane industry based on new developments of chemical engineering [J]. Chemical Industry and Engineering Progree, 2013, 32(04): 786-790. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||