CIESC Journal ›› 2016, Vol. 67 ›› Issue (7): 2656-2671.DOI: 10.11949/j.issn.0438-1157.20160209
Previous Articles Next Articles
TONG Yingjia, WU Wenjia, PENG Hui, LIU Lugang, HUANG He, JI Xiaojun
Received:
2016-02-26
Revised:
2016-04-23
Online:
2016-07-05
Published:
2016-07-05
Supported by:
supported by the National Basic Research Program of China (2011CBA00800), the National Natural Science Foundation of China (21376002, 21476111), the National High Technology Research and Development Program of China (2011AA02A207) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.
童颖佳, 邬文嘉, 彭辉, 刘陆罡, 黄和, 纪晓俊
通讯作者:
纪晓俊
基金资助:
国家重点基础研究发展计划项目(2011CBA00800);国家自然科学基金项目(21376002,21476111);国家高技术研究发展计划项目(2011AA02A207);江苏高校优势学科建设工程资助项目。
CLC Number:
TONG Yingjia, WU Wenjia, PENG Hui, LIU Lugang, HUANG He, JI Xiaojun. Metabolic engineering for efficient microbial production of 2,3-butanediol[J]. CIESC Journal, 2016, 67(7): 2656-2671.
童颖佳, 邬文嘉, 彭辉, 刘陆罡, 黄和, 纪晓俊. 微生物合成2,3-丁二醇的代谢工程[J]. 化工学报, 2016, 67(7): 2656-2671.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20160209
[1] | TONG Y J, JI X J, SHEN M Q, et al. Constructing a synthetic constitutive metabolic pathway in Escherichia coli for (R, R)- 2, 3-butanediol production [J]. Applied Microbiology & Biotechnology, 2016, 100(2): 637-647. |
[2] | JI X J, HUANG H, OUYANG P K. Microbial 2, 3-butanediol production: a state-of-the-art review [J]. Biotechnology Advances, 2011, 29(3): 351-364. |
[3] | CELINSKA E, GRAJEK W. Biotechnological production of 2, 3-butanediol-current state and prospects [J]. Biotechnology Advances, 2009, 27(6): 715-725. |
[4] | 纪晓俊, 聂志奎, 黎志勇, 等. 生物制造2, 3-丁二醇: 回顾与展望 [J]. 化学进展, 2010, 22(12): 2450-2461. JI X J, NIE Z K, LI Z Y, et al. Biotechnological production of 2, 3-butanediol [J]. Progress in Chemistry, 2010, 22(12): 2450-2461. |
[5] | 沈梦秋, 纪晓俊, 聂志奎, 等. 生物制造不同立体构型2, 3-丁二醇: 合成机理与实现方法 [J]. 催化学报, 2013, 34(2): 351-360. SHEN M Q, JI X J, NIE Z K, et al. Biotechnological production of 2, 3-butanediol stereoisomers: synthetic mechanism and realized methods [J]. Chinese Journal of Catalysis, 2013, 34(2): 351-360. |
[6] | ZENG A P, SABRA W. Microbial production of diols as platform chemicals: recent progresses [J]. Current Opinion in Biotechnology, 2011, 22(6): 749-757. |
[7] | 付晶, 王萌, 刘维喜, 等. 生物法制备2, 3-丁二醇的最新进展 [J]. 化学进展, 2012, 24(11): 2268-2276. FU J, WANG M, LIU W X, et al. Latest advances of microbial production of 2, 3-butanediol [J]. Progress in Chemistry, 2012, 24(11): 2268-2276. |
[8] | MA C, WANG A, QIN J, et al. Enhanced 2, 3-butanediol production by Klebsiella pneumoniae SDM [J]. Appl. Microbiol. Biotechnol., 2009, 82(1): 49-57. |
[9] | CHO S, KIM T, WOO H M, et al. Enhanced 2, 3-butanediol production by optimizing fermentation conditions and engineering Klebsiella oxytoca M1 through overexpression of acetoin reductase [J]. Plos One, 2015, 10(9): e0138109. |
[10] | JUNG M Y, JUNG H M, LEE J, et al. Alleviation of carbon catabolite repression in Enterobacter aerogenes for efficient utilization of sugarcane molasses for 2, 3-butanediol production [J]. Biotechnol. Biofuels, 2015, 8(1): 1-12. |
[11] | LI L X, LI K, WANG Y, et al. Metabolic engineering of Enterobacter cloacae for high-yield production of enantiopure (2R, 3R)- 2, 3-butanediol from lignocellulose-derived sugars [J]. Metabolic Engineering, 2015, 28: 19-27. |
[12] | FU J, WANG Z, CHEN T, et al. NADH plays the vital role for chiral pure D-(-)-2, 3-butanediol production in Bacillus subtilis under limited oxygen conditions [J]. Biotechnology and Bioengineering, 2014, 111(10): 2126-2131. |
[13] | LI L, ZHANG L, LI K, et al. A newly isolated Bacillus licheniformis strain thermophilically produces 2, 3-butanediol, a platform and fuel bio-chemical [J]. Biotechnol Biofuels, 2013, 6(1): 213-223. |
[14] | YANG T, RAO Z, ZHANG X, et al. Improved production of 2, 3-butanediol in Bacillus amyloliquefaciens by over-expression of glyceraldehyde-3-phosphate dehydrogenase and 2, 3-butanediol dehydrogenase [J]. Plos One, 2013, 8(10): e76149. |
[15] | HAESSLER T, SCHIEDER D, PFALLER R, et al. Enhanced fed-batch fermentation of 2, 3-butanediol by Paenibacillus polymyxa DSM 365 [J]. Bioresource Technology, 2012, 124: 237-244. |
[16] | ZHANG L, SUN J, HAO Y, et al. Microbial production of 2, 3-butanediol by a surfactant (serrawettin)-deficient mutant of Serratia marcescens H30 [J]. J. Ind. Microbiol. Biotechnol., 2010, 37(8): 857-62. |
[17] | YANG T H, RATHNASINGH C, LEE H J, et al. Identification of acetoin reductases involved in 2, 3-butanediol pathway in Klebsiella oxytoca [J]. Journal of Biotechnology, 2014, 172: 59-66. |
[18] | LEE S, KIM B, JEONG D, et al. Observation of 2, 3-butanediol biosynthesis in Lys regulator mutated Klebsiella pneumoniae at gene transcription level [J]. Journal of Biotechnology, 2013, 168(4): 520-526. |
[19] | OLIVEIRA R R D, NICHOLSON W L. The LysR-type transcriptional regulator (LTTR) AlsR indirectly regulates expression of the Bacillus subtilis bdhA gene encoding 2, 3-butanediol dehydrogenase [J]. Appl. Microbiol. Biotechnol., 2013, 97(16): 7307-7316. |
[20] | FRAEDRICH C, MARCH A, FIEGE K, et al. The transcription factor AlsR binds and regulates the promoter of the alsSD operon responsible for acetoin formation in Bacillus subtilis [J]. Journal of Bacteriology, 2012, 194(5): 1100-1112. |
[21] | LIAN J, CHAO R, ZHAO H. Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R, 3R)-butanediol [J]. Metab. Eng., 2014, 23: 92-99. |
[22] | KIM S J, SEO S O, JIN Y S, et al. Production of 2, 3-butanediol by engineered Saccharomyces cerevisiae [J]. Bioresource Technology, 2013, 146: 274-281. |
[23] | GUO X W, ZHANG Y H, CAO C H, et al. Enhanced production of 2, 3-butanediol by overexpressing acetolactate synthase and acetoin reductase in Klebsiella pneumoniae [J]. Biotechnology and Applied Biochemistry, 2014, 61(6): 707-715. |
[24] | ZHANG L. Enhanced 2, 3-butanediol production by Serratia marcescens H30 with over-expression of 2, 3-butanediol dehydrogenase [J]. Res. J. Biotechnol., 2015, 10(5): 75-80. |
[25] | BAI F, DAI L, FAN J, et al. Engineered Serratia marcescens for efficient (3R)-acetoin and (2R, 3R)-2, 3-butanediol production [J]. J. Ind. Microbiol. Biotechnol., 2015, 42(5): 779-786. |
[26] | ZHENG Y, ZHANG H, ZHAO L, et al. One-step production of 2, 3-butanediol from starch by secretory over-expression of amylase in Klebsiella pneumoniae [J]. Journal of Chemical Technology and Biotechnology, 2008, 83(10): 1409-1412. |
[27] | TSVETANOVA F, PETROVA P, PETROV K. 2, 3-Butanediol production from starch by engineered Klebsiella pneumoniae G31-A [J]. Appl. Microbiol. Biotechnol., 2014, 98(6): 2441-2451. |
[28] | JI X J, NIE Z K, HUANG H, et al. Elimination of carbon catabolite repression in Klebsiella oxytoca for efficient 2, 3-butanediol production from glucose-xylose mixtures [J]. Appl. Microbiol. Biotechnol., 2011, 89(4): 1119-1125. |
[29] | JANTAMA K, POLYIAM P, KHUNNONKWAO P, et al. Efficient reduction of the formation of by-products and improvement of production yield of 2, 3-butanediol by a combined deletion of alcohol dehydrogenase, acetate kinase-phosphotransacetylase, and lactate dehydrogenase genes in metabolically engineered Klebsiella oxytoca in mineral salts medium [J]. Metab. Eng., 2015, 30: 16-26. |
[30] | JI X J, HUANG H, ZHU J G, et al. Engineering Klebsiella oxytoca for efficient 2, 3-butanediol production through insertional inactivation of acetaldehyde dehydrogenase gene [J]. Appl. Microbiol. Biotechnol., 2010, 85(6): 1751-1758. |
[31] | QI G F, KANG Y F, LI L, et al. Deletion of meso-2, 3-butanediol dehydrogenase gene budC for enhanced D-2, 3-butanediol production in Bacillus licheniformis [J]. Biotechnol. Biofuels, 2014, 7(1): 754-760. |
[32] | RADOS D, CARVALHO A L, WIESCHALKA S, et al. Engineering Corynebacterium glutamicum for the production of 2, 3-butanediol [J]. Microb. Cell Fact., 2015, 14(1): 171. |
[33] | CHO S, KIM T, WOO H M, et al. High production of 2, 3-butanediol from biodiesel-derived crude glycerol by metabolically engineered Klebsiella oxytoca M1 [J]. Biotechnol. Biofuels, 2015, 8(1): 1-12. |
[34] | 康燕菲, 田平芳, 谭天伟. 肺炎克雷伯氏菌毒力因子的研究进展 [J]. 微生物学报, 2015, 55(10): 1245-1252. KANG Y F, TIAN P F, TAN T W. Research advances in the virulence factors of Klebsiella pneumoniae - a review [J]. Acta Microbiologica Sinica, 2015, 55 (10): 1245-1252. |
[35] | JUNG S G, JANG J H, KIM A Y, et al. Removal of pathogenic factors from 2, 3-butanediol-producing Klebsiella species by inactivating virulence-related wabG gene [J]. Appl. Microbiol. Biotechnol., 2013, 97(5): 1997-2007. |
[36] | HUYNH D T, KIM A Y, SEOL I H, et al. Inactivation of the virulence factors from 2, 3-butanediol-producing Klebsiella pneumoniae [J]. Appl. Microbiol. Biotechnol., 2015, 99(22): 9427-9438. |
[37] | KIM B, LEE S, JEONG D, et al. Redistribution of carbon flux toward 2, 3-butanediol production in Klebsiella pneumoniae by metabolic engineering [J]. Plos One, 2014, 9(10): e105322. |
[38] | PARK J M, SONG H, LEE H J, et al. In silico aided metabolic engineering of Klebsiella oxytoca and fermentation optimization for enhanced 2, 3-butanediol production [J]. J. Ind. Microbiol. Biotechnol., 2013, 40(9): 1057-1066. |
[39] | DUETZ W A, VAN BEILEN J B, WITHOLT B. Using proteins in their natural environment: potential and limitations of microbial whole-cell hydroxylations in applied biocatalysis [J]. Current Opinion in Biotechnology, 2001, 12(4): 419-425. |
[40] | DREPPER T, EGGERT T, HUMMEL W, et al. Novel biocatalysts for white biotechnology [J]. Biotechnology Journal, 2006, 1(7/8): 777-786. |
[41] | YANG T, RAO Z, HU G, et al. Metabolic engineering of Bacillus subtilis for redistributing the carbon flux to 2, 3-butanediol by manipulating NADH levels [J]. Biotechnol. Biofuels, 2015, 8(1): 1-9. |
[42] | ZHANG L, XU Y Y, GAO J, et al. Introduction of the exogenous NADH coenzyme regeneration system and its influence on intracellular metabolic flux of Paenibacillus polymyxa [J]. Bioresource Technology, 2016, 201: 319-328. |
[43] | GECKIL H, GENCER S, KAHRAMAN H, et al. Genetic engineering of Enterobacter aerogenes with the Vitreoscilla hemoglobin gene: cell growth, survival, and antioxidant enzyme status under oxidative stress [J]. Research in Microbiology, 2003, 154(6): 425-431. |
[44] | GECKIL H, BARAK Z, CHIPMAN D M, et al. Enhanced production of acetoin and butanediol in recombinant Enterobacter aerogenes carrying Vitreoscilla hemoglobin gene [J]. Bioprocess and Biosystems Engineering, 2004, 26(5): 325-330. |
[45] | JEONG J W, PARK K M, CHUNG M, et al. Influence of Vitreoscilla hemoglobin gene expression on 2, 3-butanediol production in Klebsiella oxytoca [J]. Biotechnology and Bioprocess Engineering, 2015, 20(1): 10-17. |
[46] | ALPER H, MOXLEY J, NEVOIGT E, et al. Engineering yeast transcription machinery for improved ethanol tolerance and production [J]. Science, 2006, 314(5805): 1565-1568. |
[47] | MOONS P, VAN HOUDT R, VIVIJS B, et al. Integrated regulation of acetoin fermentation by quorum sensing and pH in Serratia plymuthica RVH1 [J]. Applied and Environmental Microbiology, 2011, 77(10): 3422-3427. |
[48] | ZHANG X, ZHANG R Z, BAO T, et al. Moderate expression of the transcriptional regulator ALsR enhances acetoin production by Bacillus subtilis [J]. J. Ind. Microbiol. Biotechnol., 2013, 40(9): 1067-1076. |
[49] | YANG T W, RAO Z M, ZHANG X, et al. Enhanced 2, 3-butanediol production from biodiesel-derived glycerol by engineering of cofactor regeneration and manipulating carbon flux in Bacillus amyloliquefaciens [J]. Microbial Cell Factories, 2015, 14(1): 1-11. |
[50] | KEASLING J D. Manufacturing molecules through metabolic engineering [J]. Science, 2010, 330(6009): 1355-1358. |
[51] | LI Z J, JIAN J, WEI X X, et al. Microbial production of meso- 2, 3-butanediol by metabolically engineered Escherichia coli under low oxygen condition [J]. Appl. Microbiol. Biotechnol., 2010, 87(6): 2001-2009. |
[52] | UI S, OKAJIMA Y, MIMURA A, et al. Molecular generation of an Escherichia coli strain producing only the meso-isomer of 2, 3-butanediol [J]. Journal of Fermentation and Bioengineering, 1997, 84(3): 185-189. |
[53] | YAN Y, LEE C C, LIAO J C. Enantioselective synthesis of pure (R, R)-2, 3-butanediol in Escherichia coli with stereospecific secondary alcohol dehydrogenases [J]. Organic & Biomolecular Chemistry, 2009, 7(19): 3914-3917. |
[54] | SHEN X, LIN Y, JAIN R, et al. Inhibition of acetate accumulation leads to enhanced production of (R, R)-2, 3-butanediol from glycerol in Escherichia coli [J]. J. Ind. Microbiol. Biotechnol., 2012, 39(11): 1725-1729. |
[55] | JI X J, LIU L G, SHEN M Q, et al. Constructing a synthetic metabolic pathway in Escherichia coli to produce the enantiomerically pure (R, R)-2, 3-butanediol [J]. Biotechnology and Bioengineering, 2015, 112(5): 1056-1059. |
[56] | CHU H, XIN B, LIU P, et al. Metabolic engineering of Escherichia coli for production of (2S, 3S)-butane-2, 3-diol from glucose [J]. Biotechnol. Biofuels, 2015, 8(1): 1-11. |
[57] | MAZUMDAR S, LEE J, OH M K. Microbial production of 2, 3-butanediol from seaweed hydrolysate using metabolically engineered Escherichia coli [J]. Bioresour. Technol., 2013, 136: 329-336. |
[58] | NIELSEN D R, YOON S H, YUAN C J, et al. Metabolic engineering of acetoin and meso-2, 3-butanediol biosynthesis in E. coli [J]. Biotechnology Journal, 2010, 5(3): 274-284. |
[59] | XU Y, CHU H, GAO C, et al. Systematic metabolic engineering of Escherichia coli for high-yield production of fuel bio-chemical 2, 3-butanediol [J]. Metabolic Engineering, 2014, 23: 22-33. |
[60] | LEE S, KIM B, PARK K, et al. Synthesis of pure meso- 2, 3-butanediol from crude glycerol using an engineered metabolic pathway in Escherichia coli [J]. Applied Biochemistry and Biotechnology, 2012, 166(7): 1801-1813. |
[61] | SHIN H D, YOON S H, WU J, et al. High-yield production of meso-2, 3-butanediol from cellodextrin by engineered E. coli biocatalysts [J]. Bioresource Technology, 2012, 118: 367-373. |
[62] | KAY J E, JEWETT M C. Lysate of engineered Escherichia coli supports high-level conversion of glucose to 2, 3-butanediol [J]. Metabolic Engineering, 2015, 32: 133-142. |
[63] | DUDLEY Q M, KARIM A S, JEWETT M C. Cell-free metabolic engineering: biomanufacturing beyond the cell [J]. Biotechnology Journal, 2015, 10(1): 69-82. |
[64] | KIM J W, SEO S O, ZHANG G C, et al. Expression of Lactococcus lactis NADH oxidase increases 2, 3-butanediol production in Pdc-deficient Saccharomyces cerevisiae [J]. Bioresource Technology, 2015, 191: 512-519. |
[65] | ROMANO P, SUZZI G. Origin and production of acetoin during wine yeast fermentation [J]. Applied and Environmental Microbiology, 1996, 62(2): 309-315. |
[66] | CHEN G C, JORDAN F. Brewers-yeast pyruvate decarboxylase produces acetoin from acetaldehyde-a novel tool to study the mechanism of steps subsequent to carbon-dioxide loss [J]. Biochemistry, 1984, 23(16): 3576-3582. |
[67] | EHSANI M, FERNANDEZ M R, BIOSCA J A, et al. Reversal of coenzyme specificity of 2, 3-butanediol dehydrogenase from Saccharomyces cerevisae and in vivo functional analysis [J]. Biotechnology and Bioengineering, 2009, 104(2): 381-389. |
[68] | EHSANI M, FERNANDEZ M R, BIOSCA J A, et al. Engineering of 2, 3-butanediol dehydrogenase to reduce acetoin formation by glycerol-overproducing, low-alcohol Saccharomyces cerevisiae [J]. Appl. Environ. Microbiol., 2009, 75(10): 3196-3205. |
[69] | NG C Y, JUNG M Y, LEE J, et al. Production of 2, 3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering [J]. Microb. Cell Fact., 2012, 11(20): 115-120. |
[70] | NAN H, SEO S O, OH E J, et al. 2, 3-Butanediol production from cellobiose by engineered Saccharomyces cerevisiae [J]. Appl. Microbiol. Biotechnol., 2014, 98(12): 5757-5764. |
[71] | KIM S J, SEO S O, PARK Y C, et al. Production of 2, 3-butanediol from xylose by engineered Saccharomyces cerevisiae [J]. J. Biotechnol., 2014, 192: 376-382. |
[72] | FLIKWEERT M T, DE SWAAF M, VAN DIJKEN J P, et al. Growth requirements of pyruvate-decarboxylase-negative Saccharomyces cerevisiae [J]. FEMS Microbiology Letters, 1999, 174(1): 73-79. |
[73] | KIM S, HAHN J S. Efficient production of 2, 3-butanediol in Saccharomyces cerevisiae by eliminating ethanol and glycerol production and redox rebalancing [J]. Metab. Eng., 2015, 31: 94-101. |
[74] | CAMBON B, MONTEIL V, REMIZE F, et al. Effects of GPD1 overexpression in Saccharomyces cerevisiae commercial wine yeast strains lacking ALD6 genes [J]. Applied and Environmental Microbiology, 2006, 72(7): 4688-4694. |
[75] | OUD B, FLORES C L, GANCEDO C, et al. An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae [J]. Microbial Cell Factories, 2012, 11(5): 54-55. |
[76] | VAN MARIS A J A, GEERTMAN J M A, VERMEULEN A, et al. Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C-2-independent, glucose- tolerant, and pyruvate-hyperproducing yeast [J]. Applied and Environmental Microbiology, 2004, 70(1): 159-166. |
[77] | SHI S, LIANG Y, ZHANG M M, et al. A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae [J]. Metab. Eng., 2015, 33: 19-27. |
[78] | MACHADO I M P, ATSUMI S. Cyanobacterial biofuel production [J]. Journal of Biotechnology, 2012, 162(1): 50-56. |
[79] | ATSUMI S, HIGASHIDE W, LIAO J C. Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde [J]. Nature Biotechnology, 2009, 27(12): 1177-U142. |
[80] | LAN E I, LIAO J C. ATP drives direct photosynthetic production of 1-butanol in cyanobacteria [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(16): 6018-6023. |
[81] | TAKAHAMA K, MATSUOKA M, NAGAHAMA K, et al. Construction and analysis of a recombinant cyanobacterium expressing a chromosomally inserted gene for an ethylene-forming enzyme at the psbAI locus [J]. Journal of Bioscience and Bioengineering, 2003, 95(3): 302-305. |
[82] | ZHOU J, ZHANG H, ZHANG Y, et al. Designing and creating a modularized synthetic pathway in cyanobacterium Synechocystis enables production of acetone from carbon dioxide [J]. Metabolic Engineering, 2012, 14(4): 394-400. |
[83] | LIU X, SHENG J, CURTISS R Ⅲ. Fatty acid production in genetically modified cyanobacteria [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(17): 6899-6904. |
[84] | TAN X, YAO L, GAO Q, et al. Photosynthesis driven conversion of carbon dioxide to fatty alcohols and hydrocarbons in cyanobacteria [J]. Metabolic Engineering, 2011, 13(2): 169-176. |
[85] | OLIVER J W, MACHADO I M, YONEDA H, et al. Cyanobacterial conversion of carbon dioxide to 2, 3-butanediol [J]. Proc. Natl. Acad. Sci. U. S. A., 2013, 110(4): 1249-1254. |
[86] | OLIVER J W K, MACHADO I M P, YONEDA H, et al. Combinatorial optimization of cyanobacterial 2, 3-butanediol production [J]. Metabolic Engineering, 2014, 22: 76-82. |
[87] | SAVAKIS P E, ANGERMAYR S A, HELLINGWERF K J. Synthesis of 2, 3-butanediol by Synechocystis sp. PCC6803 via heterologous expression of a catabolic pathway from lactic acid- and enterobacteria [J]. Metab. Eng., 2013, 20: 121-130.4. |
[84] | TAN X, YAO L, GAO Q, et al. Photosynthesis driven conversion of carbon dioxide to fatty alcohols and hydrocarbons in cyanobacteria [J]. Metabolic Engineering, 2011, 13(2): 169-176. |
[85] | OLIVER J W, MACHADO I M, YONEDA H, et al. Cyanobacterial conversion of carbon dioxide to 2,3-butanediol [J]. Proc. Natl. Acad. Sci. U. S. A., 2013, 110(4): 1249-1254. |
[86] | OLIVER J W K, MACHADO I M P, YONEDA H, et al. Combinatorial optimization of cyanobacterial 2,3-butanediol production [J]. Metabolic Engineering, 2014, 22: 76-82. |
[87] | SAVAKIS P E, ANGERMAYR S A, HELLINGWERF K J. Synthesis of 2,3-butanediol by Synechocystis sp. PCC6803 via heterologous expression of a catabolic pathway from lactic acid- and enterobacteria [J]. Metab. Eng., 2013, 20: 121-130. |
[1] | Xin LIU, Jun GE, Chun LI. Light-driven microbial hybrid systems improve level of biomanufacturing [J]. CIESC Journal, 2023, 74(1): 330-341. |
[2] | Xue LIU, Lijuan ZHANG, Guangrong ZHAO. Commensalistic Escherichia coli coculture for biosynthesis of daidzein [J]. CIESC Journal, 2022, 73(9): 4015-4024. |
[3] | Yi SUN, Teng ZHANG, Bo LYU, Chun LI. Improvement for fine regulation of microbial cell factory by intracellular biosensors [J]. CIESC Journal, 2022, 73(2): 521-534. |
[4] | Jingnan WANG, Jian PANG, Lei QIN, Chao GUO, Bo LYU, Chun LI, Chao WANG. Breeding and modification strategies of butenyl-spinosyn high-yield strains [J]. CIESC Journal, 2022, 73(2): 566-576. |
[5] | Xinhui WANG, Ying WANG, Mingdong YAO, Wenhai XIAO. Research progress of vitamin A biosynthesis [J]. CIESC Journal, 2022, 73(10): 4311-4323. |
[6] | Haibo LIU, Nan WANG, Hongzhou LIU, Tiezhu CHEN, Jianchang LI. Effects of voltage perturbation on the activities of microorganisms and key enzymes in EAD metabolic flux [J]. CIESC Journal, 2022, 73(10): 4603-4612. |
[7] | Wulin ZHOU, Huifang GAO, Yuling WU, Xian ZHANG, Meijuan XU, Taowei YANG, Minglong SHAO, Zhiming RAO. Engineering of Saccharomyces cerevisiae for biosynthesis of campesterol [J]. CIESC Journal, 2021, 72(8): 4314-4324. |
[8] | YANG Ruixiong, ZHENG Xin, LU Tao, ZHAO Yuze, YANG Qinghua, LU Yinghua, HE Ning, LING Xueping. Effects of substitution of ER domains on the synthesis of eicosapentaenoic acid in Schizochytrium limacinum SR21 [J]. CIESC Journal, 2021, 72(7): 3768-3779. |
[9] | MAO Jinzhu, XIAO Shuling, YANG Zhichun, WANG Xiaoyu, ZHANG Shi, CHEN Junhong, XIE Jisheng, CHEN Fude, HUANG Zinuo, FENG Tianyu, ZHANG Aihui, FANG Baishan. Application of synthetic biology in pesticides residues detection [J]. CIESC Journal, 2021, 72(5): 2413-2425. |
[10] | WANG Xin, ZHAO Peng, LI Qingyang, TIAN Pingfang. Research advances in semiconductor synthetic biology [J]. CIESC Journal, 2021, 72(5): 2426-2435. |
[11] | SUN Jingjing, JIA Lina, LIN Bo, WANG Yan, GONG Junbo. Research advances of drug-drug co-crystals [J]. CIESC Journal, 2021, 72(2): 828-840. |
[12] | Xiaojing ZHANG,Bingbing MA,Han ZHANG,Denghui WEI,Hongli ZHANG,Hao HU,Zirui ZHAO. Comparison of the performance of Anammox process in the treatment of wastewater from different antibiotics [J]. CIESC Journal, 2021, 72(11): 5810-5819. |
[13] | WANG Lian, WU Di, ZHOU Jingwen. Research progress of lignans biosynthesis and their microbial production [J]. CIESC Journal, 2021, 72(1): 320-333. |
[14] | WANG Kaifeng, WANG Jinpeng, WEI Ping, JI Xiaojun. Metabolic engineering of Yarrowia lipolytica to produce fatty acids and their derivatives [J]. CIESC Journal, 2021, 72(1): 351-365. |
[15] | ZHAO Zhenyao, ZHANG Baocai, LI Feng, SONG Hao. Design and construction of exoelectrogens by synthetic biology [J]. CIESC Journal, 2021, 72(1): 468-482. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||