1 |
Tian P, Wei Y X, Ye M, et al. Methanol to olefins (MTO): from fundamentals to commercialization[J]. ACS Catalysis, 2015, 5(3): 1922-1938.
|
2 |
牛燕. MTO/MTP大型反应器的多尺度CFD模拟[D].北京:中国科学院过程工程研究所, 2018.
|
|
Niu Y. Multi-scale CFD simulation of MTO/MTP large-scale fluidized bed reactor[D]. Beijing: Institute of Process Engineering, Chinese Academy of Sciences, 2018.
|
3 |
Zhong J W, Han J F, Wei Y X, et al. Catalysts and shape selective catalysis in the methanol-to-olefin (MTO) reaction[J]. Journal of Catalysis, 2021, 396: 23-31.
|
4 |
Sun Q M, Xie Z K, Yu J H. The state-of-the-art synthetic strategies for SAPO-34 zeolite catalysts in methanol-to-olefin conversion[J]. National Science Review, 2017, 5(4): 542-558.
|
5 |
周石杰, 任祯, 杨宇森, 等. 不同形貌金属氧化物的制备及其在工业催化反应中的应用[J]. 化工学报, 2021,72(6): 2972-3001.
|
|
Zhou S J, Ren Z, Yang Y S, et al. Preparation and application of metal oxides with various morphology for industrial catalysis[J]. CIESC Journal, 2021, 72(6): 2972-3001.
|
6 |
朱慧红, 茆志伟, 杨涛, 等. 催化剂形貌对沸腾床渣油加氢Ni-Mo/Al2O3催化剂活性位的影响机制[J]. 化工学报, 2021, 72(4): 2076-2085.
|
|
Zhu H H, Mao Z W, Yang T, et al. Influence mechanism of catalyst morphology on the active sites of Ni-Mo/ Al2O3 catalyst for ebullated bed residue hydrogenation[J]. CIESC Journal, 2021, 72(4): 2076-2085.
|
7 |
郭瑶庆, 严加松, 舒春溪, 等. 催化裂化催化剂形貌分析方法的建立[J]. 工业催化, 2020, 28(3): 73-77.
|
|
Guo Y Q, Yan J S, Shu C X, et al. Methodology for investigating the morphology of FCC catalyst[J]. Industrial Catalysis, 2020, 28(3): 73-77.
|
8 |
张小辉, 刘柏谦, 王立刚. 流化床料的静态颗粒形貌特征[J]. 过程工程学报, 2009, 9(S2): 158-163.
|
|
Zhang X H, Liu B Q, Wang L G. Geometric parameters measurement of particles from circulating fluidized bed boiler[J]. The Chinese Journal of Process Engineering, 2009, 9(S2): 158-163.
|
9 |
Tustison N J, Avants B B, Gee J C. Learning image-based spatial transformations via convolutional neural networks: a review[J]. Magnetic Resonance Imaging, 2019, 64: 142-153.
|
10 |
Nunthavarawong P. Comparative study on wear particle colour classifications using various machine learning algorithms[J]. Applied Mechanics and Materials, 2014, 619: 347-351.
|
11 |
Patra S S, Ramsisaria R, Du R H, et al. A machine learning field calibration method for improving the performance of low-cost particle sensors[J]. Building and Environment, 2021, 190: 107457.
|
12 |
谢涛. 基于深度学习的微细粒矿物识别研究[D]. 徐州: 中国矿业大学, 2020.
|
|
Xie T. Research on recognition of fine-grained minerals based on deep learning[D]. Xuzhou: China University of Mining and Technology, 2020.
|
13 |
Zhou J B, Zhao J P, Zhang J L, et al. Regeneration of catalysts deactivated by coke deposition: a review[J]. Chinese Journal of Catalysis, 2020, 41(7): 1048-1061.
|
14 |
齐国祯, 谢在库, 刘红星, 等. 甲醇制烯烃反应过程中SAPO-34分子筛催化剂的积碳行为研究[J]. 石油化工, 2006, 35(1): 29-32.
|
|
Qi G Z, Xie Z K, Liu H X, et al. Study on carbon deposition on SAPO-34 molecular sieve catalyst in transformation of methanol to olefins[J]. Petrochemical Technology, 2006, 35(1): 29-32.
|
15 |
Ahmad M S, Cheng C K, Bhuyar P, et al. Effect of reaction conditions on the lifetime of SAPO-34 catalysts in methanol to olefins process — a review[J]. Fuel, 2021, 283: 118851.
|
16 |
邢爱华, 朱伟平, 岳国. 甲醇制烯烃反应催化剂积碳分析方法的概述[J]. 石油化工, 2011, 40(9): 1010-1017.
|
|
Xing A H, Zhu W P, Yue G. Outline of analysis method for carbon deposition on methanol to olefins catalysts[J]. Petrochemical Technology, 2011, 40(9): 1010-1017.
|
17 |
高树树, 徐舒涛, 魏迎旭, 等. 固体核磁共振技术在甲醇制烯烃反应中的应用[J]. 波谱学杂志, 2021, 38(4): 433-447.
|
|
Gao S S, Xu S T, Wei Y X, et al. Applications of solid-state nuclear magnetic resonance spectroscopy in methanol-to-olefins reaction[J]. Chinese Journal of Magnetic Resonance, 2021, 38(4): 433-447.
|
18 |
姜瑞霞, 谢在库, 张成芳, 等. Pd-La/镁铝尖晶石催化剂上气相胺化法合成2, 6-二异丙基苯胺[J]. 催化学报, 2003,24(7): 489-493.
|
|
Jiang R X, Xie Z K, Zhang C F, et al. Synthesis of 2, 6-diisopropylaniline by gas-phase amination on Mg-Al spinel-supported Pd-La catalyst[J]. Chinese Journal of Catalysis, 2003, 24(7): 489-493.
|
19 |
李灿, 李美俊. 拉曼光谱在催化研究中应用的进展[J]. 分子催化, 2003, 17(3): 213-240.
|
|
Li C, Li M J. Review of Raman spectroscopy on catalyst research [J]. Journal of Molecular Catalysis, 2003, 17(3): 213-240.
|
20 |
Mores D, Stavitski E, Kox M, et al. Space- and time-resolved in situ spectroscopy on the coke formation in molecular sieves: methanol-to-olefin conversion over H-ZSM-5 and H-SAPO-34[J]. Chemistry - A European Journal, 2008, 14(36): 11320-11327.
|
21 |
Müller S, Liu Y, Vishnuvarthan M, et al. Coke formation and deactivation pathways on H-ZSM-5 in the conversion of methanol to olefins[J]. Journal of Catalysis, 2015, 325: 48-59.
|
22 |
Eisenuch D, Gallei E. Infrared spectroscopic investigations relating to coke formation on zeolites (Ⅰ): Adsorption of hexene-1 and n-hexane on zeolites of type Y [J]. Journal of Catalysis, 1979, 56: 377–389.
|
23 |
Park T U, Jin S M, Lee D W. Investigation of the ozone-induced oxidation of soot over LaMnO catalyst using O3/O2 temperature-programmed desorption experiments[J]. Reaction Kinetics, Mechanisms and Catalysis, 2021, 133(1): 259-276.
|
24 |
Hu H, Cao F H, Ying W Y, et al. Study of coke behavior of catalyst during methanol-to-olefins process based on a special TGA reactor[J]. Chemical Engineering Journal, 2010, 160(2): 770-778.
|
25 |
Qian L, Lu Y, Zhong W Q, et al. Developing a novel fibre high speed photography method for investigating solid volume fraction in a 3D spouted bed[J]. The Canadian Journal of Chemical Engineering, 2013: 1793-1799.
|
26 |
周弼辉, 赵明, 梁俊宇, 等. 湍动流化床内固体颗粒扩散系数[J]. 化工学报, 2016, 67(5): 1741-1747.
|
|
Zhou B H, Zhao M, Liang J Y, et al. Diffusion coefficient of solid particles in turbulent fluidized bed[J]. CIESC Journal, 2016, 67(5): 1741-1747.
|
27 |
陈曦, 钟文琪, 陆勇, 等. 基于光纤内窥镜和高速摄影联用测量喷动床颗粒速度研究[J]. 工程热物理学报, 2013, 34(2): 278-281.
|
|
Chen X, Zhong W Q, Lu Y, et al. Measurement of particle velocity in spouted bed based on the combination of fiberscope and high-speed photography[J]. Journal of Engineering Thermophysics, 2013, 34(2): 278-281.
|
28 |
Liu Q, Qiao Z, Lyu Y. PVT: a python-based open-source software for visualization and graphic analysis of fluid dynamics datasets[J]. Aerospace Science and Technology, 2021, 117: 106961.
|