CIESC Journal ›› 2022, Vol. 73 ›› Issue (6): 2649-2661.DOI: 10.11949/0438-1157.20211701
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Tienan LI1,2(),Bidan ZHAO2,3,Peng ZHAO2,3,Yongmin ZHANG1(),Junwu WANG2,3,4()
Received:
2021-11-29
Revised:
2022-03-11
Online:
2022-06-30
Published:
2022-06-05
Contact:
Yongmin ZHANG,Junwu WANG
李铁男1,2(),赵碧丹2,3,赵鹏2,3,张永民1(),王军武2,3,4()
通讯作者:
张永民,王军武
作者简介:
李铁男(1996—),男,硕士研究生,基金资助:
CLC Number:
Tienan LI, Bidan ZHAO, Peng ZHAO, Yongmin ZHANG, Junwu WANG. CFD-DEM simulation of the force acting on immersed baffles during the start-up stage of a gas-solid fluidized bed[J]. CIESC Journal, 2022, 73(6): 2649-2661.
李铁男, 赵碧丹, 赵鹏, 张永民, 王军武. 气固流化床启动阶段挡板内构件受力特性的CFD-DEM模拟[J]. 化工学报, 2022, 73(6): 2649-2661.
Fig.1 Schematic diagram of contact between the baffle and particles in dense bed(a) and contact between an imaginary plane and particles in a dense bed(b)
Parameter | Value | |
---|---|---|
bed size | Lx ×Ly ×Lz /mm | 300×300×2200 |
baffle size | lx ×ly ×lz /mm | 60×300×10 |
particle | mean Sauter particle diameter/μm | 595 |
density/(kg/m3) | 2906 | |
voidage at the minimum fluidization condition | 0.47 | |
minimum fluidization velocity/(m/s) | 0.33 | |
sphericity | 0.86 | |
coarse-graining ratio | 5 | |
coarse-grained particle number | 3459863 | |
restitution coefficient | 0.90 | |
friction coefficient | 0.30 | |
rolling friction coefficient | 0.01 | |
characteristic velocity/(m/s) | 0.5 | |
Young’s modulus/Pa | 1×108 | |
Poisson’s ratio | 0.3 | |
time step/s | 1×10-5 | |
gas | density/(kg/m3) | 1.2 |
viscosity/(Pa·s) | 1.8×10-5 | |
superficial gas velocity/(m/s) | 0.4, 0.6, 0.9 | |
operating pressure/Pa | 101325 | |
gas grid size/mm | 10 | |
time step/s | 1×10-4 |
Table 1 Simulation parameters for the baffled and free fluidized bed
Parameter | Value | |
---|---|---|
bed size | Lx ×Ly ×Lz /mm | 300×300×2200 |
baffle size | lx ×ly ×lz /mm | 60×300×10 |
particle | mean Sauter particle diameter/μm | 595 |
density/(kg/m3) | 2906 | |
voidage at the minimum fluidization condition | 0.47 | |
minimum fluidization velocity/(m/s) | 0.33 | |
sphericity | 0.86 | |
coarse-graining ratio | 5 | |
coarse-grained particle number | 3459863 | |
restitution coefficient | 0.90 | |
friction coefficient | 0.30 | |
rolling friction coefficient | 0.01 | |
characteristic velocity/(m/s) | 0.5 | |
Young’s modulus/Pa | 1×108 | |
Poisson’s ratio | 0.3 | |
time step/s | 1×10-5 | |
gas | density/(kg/m3) | 1.2 |
viscosity/(Pa·s) | 1.8×10-5 | |
superficial gas velocity/(m/s) | 0.4, 0.6, 0.9 | |
operating pressure/Pa | 101325 | |
gas grid size/mm | 10 | |
time step/s | 1×10-4 |
Parameter | Value | ||||||
---|---|---|---|---|---|---|---|
Young’s modulus/Pa | 1×108 | 5×108 | 1×109 | 2×109 | 3×109 | 5×109 | 1×1010 |
DEM-time step/s | 1×10-5 | 1×10-5 | 1×10-6 | 1×10-6 | 1×10-6 | 1×10-6 | 1×10-6 |
CFD-time step/s | 1×10-4 | 1×10-4 | 1×10-5 | 1×10-5 | 1×10-5 | 1×10-5 | 1×10-5 |
Table 2 Simulation parameters for the baffled fluidized bed
Parameter | Value | ||||||
---|---|---|---|---|---|---|---|
Young’s modulus/Pa | 1×108 | 5×108 | 1×109 | 2×109 | 3×109 | 5×109 | 1×1010 |
DEM-time step/s | 1×10-5 | 1×10-5 | 1×10-6 | 1×10-6 | 1×10-6 | 1×10-6 | 1×10-6 |
CFD-time step/s | 1×10-4 | 1×10-4 | 1×10-5 | 1×10-5 | 1×10-5 | 1×10-5 | 1×10-5 |
Fig.7 Effect of particle restitution coefficient (a), particle sliding friction coefficient (b), and particle rolling friction coefficient (c) on the stress exerted on the baffle immersed in the fluidized bed
1 | 卢天雄. 流化床反应器[M]. 北京: 化学工业出版社, 1986. |
Lu T X. Fluidized Bed Reactor [M]. Beijing: Chemical Industry Press, 1986. | |
2 | Wang Y, Jin Y, Wei F. Effect of internal tubes and baffles[M]// Handbook of Fluidization and Fluid-Particle Systems. Boca Raton: CRC Press, 2003: 171-199. |
3 | Zhang Y M. baffles and aids to fluidization[M]// Essentials of Fluidization Technology. Wiley-VCH, 2020: 431-455. |
4 | 刘对平. 气固流化床挡板内构件受力特性的实验研究[D]. 北京: 中国石油大学(北京), 2019. |
Liu D P. Experimental study on forces acting on baffles immersed in gas-solid fluidized beds[D]. Beijing: China University of Petroleum, 2019. | |
5 | Kennedy T C, Donovan J E, Trigas A. Forces on immersed tubes in fluidized beds[J]. AIChE Journal, 1981, 27(3): 351-357. |
6 | Hosny N, Grace J R. Transient forces on tubes within an array in a fluidized bed[J]. AIChE Journal, 1984, 30(6): 974-976. |
7 | Grace J R, Hosny N. Forces on horizontal tubes in gas fluidised beds[J]. Chemical Engineering Research and Design, 1985, 63(3): 191-198. |
8 | Nagahashi Y, Grace J, Lim K, et al. The mechanism of buffeting force on tubes immersed in gas-fluidized beds[J]. Transactions of the Japan Society of Mechanical Engineers Series B, 1998, 64(625): 2964-2970. |
9 | Nagahashi Y, Grace J R, Lim K S, et al. Dynamic force reduction and heat transfer improvement for horizontal tubes in large-particle gas-fluidized beds[J]. Journal of Thermal Science, 2008, 17(1): 77-83. |
10 | Liu D P, Zhang S H, Wang R Y, et al. Dynamic forces on a horizontal slat immersed in a fluidized bed of fine particles[J]. Chemical Engineering Research and Design, 2017, 117: 604-613. |
11 | Liu D P, Zhang S H, Zhang Y M, et al. Forces on an immersed horizontal slat during starting up a fluidized bed[J]. Chemical Engineering Science, 2017, 173: 402-410. |
12 | Liu D P, Zhang Y M, Yuan Y S, et al. Effect of particle properties on forces on an immersed horizontal slat during start-up of a fluidized bed[J]. Chemical Engineering Research and Design, 2020, 159: 105-114. |
13 | Liu D P, Zhang Y M, Zhang S H, et al. Effect of structure parameters on forces acting on baffles used in gas-solids fluidized beds[J]. Particuology, 2022, 61: 111-119. |
14 | Higashida K, Rai K, Yoshimori W, et al. Dynamic vertical forces working on a large object floating in gas-fluidized bed: discrete particle simulation and Lagrangian measurement[J]. Chemical Engineering Science, 2016, 151: 105-115. |
15 | Yan L, Liu H Z, Li F, et al. Dynamic characteristics of the large particles inside the fluidized bed with an inclined air distribution plate[J]. Powder Technology, 2020, 367: 632-642. |
16 | Nagahashi Y, Takeuchi H, Grace J R, et al. Dynamic forces on an immersed cylindrical tube and analysis of particle interaction in 2D-gas fluidized beds[J]. Advanced Powder Technology, 2018, 29(12): 3552-3560. |
17 | 崔树稳, 刘伟伟, 朱如曾, 等. 关于非均匀系统局部平均压力张量的推导及对均匀流体的分析[J]. 物理学报, 2019, 68(15): 293-300. |
Cui S W, Liu W W, Zhu R Z, et al. On the derivation of local mean pressure tensor for nonuniform systems and the analysis of uniform fluid[J]. Acta Physica Sinica, 2019, 68(15): 293-300. | |
18 | Chapman S, Cowling T G. The Mathematical Theory of Non-Uniform Gases: an Account of the Kinetic Theory of Viscosity[M]. 2nd ed. New York: Cambridge University Press, 1970. |
19 | Gidaspow D. Multiphase Flow and Fluidization, Continuum and Kinetic Theory Descriptions[M]. New York: Academic Press, 1994. |
20 | Rao K K, Nott P R. An Introduction to Granular Flow[M]. Cambridge: Cambridge University Press, 2008. |
21 | Zhao B D, He M M, Wang J W. Multiscale kinetic theory for heterogeneous granular and gas-solid flows[J]. Chemical Engineering Science, 2021, 232: 116346. |
22 | Babic M. Average balance equations for granular materials[J]. International Journal of Engineering Science, 1997, 35(5): 523-548. |
23 | Zhu H P, Yu A B. Averaging method of granular materials[J]. Physical Review E, 2002, 66(2): 021302. |
24 | Mehrabadi M M, Nemat-Nasser S, Oda M. On statistical description of stress and fabric in granular materials[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1982, 6(1): 95-108. |
25 | Goldhirsch I. Stress, stress asymmetry and couple stress: from discrete particles to continuous fields[J]. Granular Matter, 2010, 12(3): 239-252. |
26 | Weinhart T, Thornton A R, Luding S, et al. From discrete particles to continuum fields near a boundary[J]. Granular Matter, 2012, 14(2): 289-294. |
27 | Ries A, Brendel L, Wolf D E. Coarse graining strategies at walls[J]. Computational Particle Mechanics, 2014, 1(2): 177-190. |
28 | Oda M, Nemat-Nasser S, Mehrabadi M M. A statistical study of fabric in a random assembly of spherical granules[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1982, 6(1): 77-94. |
29 | Jagota A, Dawson P R, Jenkins J T. An anisotropic continuum model for the sintering and compaction of powder packings[J]. Mechanics of Materials, 1988, 7(3): 255-269. |
30 | Oda M, Iwashita K. Study on couple stress and shear band development in granular media based on numerical simulation analyses[J]. International Journal of Engineering Science, 2000, 38(15): 1713-1740. |
31 | Hua L N, Zhao H, Li J, et al. Eulerian-Eulerian simulation of irregular particles in dense gas-solid fluidized beds[J]. Powder Technology, 2015, 284: 299-311. |
32 | Lu L Q, Xu J, Ge W, et al. EMMS-based discrete particle method (EMMS-DPM) for simulation of gas-solid flows[J]. Chemical Engineering Science, 2014, 120: 67-87. |
33 | Peng L, Xu J, Zhu Q S, et al. GPU-based discrete element simulation on flow regions of flat bottomed cylindrical hopper[J]. Powder Technology, 2016, 304: 218-228. |
34 | Zhong W Q, Zhang Y, Jin B S, et al. Discrete element method simulation of cylinder-shaped particle flow in a gas-solid fluidized bed[J]. Chemical Engineering & Technology, 2009, 32(3): 386-391. |
35 | Kruggel-Emden H, Rickelt S, Wirtz S, et al. A study on the validity of the multi-sphere discrete element method[J]. Powder Technology, 2008, 188(2): 153-165. |
36 | Oschmann T, Hold J, Kruggel-Emden H. Numerical investigation of mixing and orientation of non-spherical particles in a model type fluidized bed[J]. Powder Technology, 2014, 258: 304-323. |
37 | Lan B, Xu J, Zhao P, et al. Long-time coarse-grained CFD-DEM simulation of residence time distribution of polydisperse particles in a continuously operated multiple-chamber fluidized bed[J]. Chemical Engineering Science, 2020, 219: 115599. |
38 | 兰斌, 徐骥, 刘志成, 等. 连续操作密相流化床颗粒停留时间分布特性模拟放大研究[J]. 化工学报, 2021, 72(1): 521-533. |
Lan B, Xu J, Liu Z C, et al. Simulation of scale-up effect of particle residence time distribution characteristics in continuously operated dense-phase fluidized beds[J]. CIESC Journal, 2021, 72(1): 521-533. | |
39 | Lan B, Xu J, Zhao P, et al. Scale-up effect of residence time distribution of polydisperse particles in continuously operated multiple-chamber fluidized beds[J]. Chemical Engineering Science, 2021, 244: 116809. |
40 | Ganser G H. A rational approach to drag prediction of spherical and nonspherical particles[J]. Powder Technology, 1993, 77(2): 143-152. |
41 | Wang J W, van der Hoef M A, Kuipers J A M. Why the two-fluid model fails to predict the bed expansion characteristics of Geldart A particles in gas-fluidized beds: a tentative answer[J]. Chemical Engineering Science, 2009, 64(3): 622-625. |
42 | Wang J W. Continuum theory for dense gas-solid flow: a state-of-the-art review[J]. Chemical Engineering Science, 2020, 215: 115428. |
43 | Wang J W, van der Hoef M A, Kuipers J A M. Coexistence of solidlike and fluidlike states in a deep gas-fluidized bed[J]. Industrial & Engineering Chemistry Research, 2010, 49(11): 5279-5287. |
44 | Jia Y, Zhang Y, Xu J, et al. Coarse-grained CFD-DEM simulation to determine the multiscale characteristics of the air dense medium fluidized bed[J]. Powder Technology, 2021, 389: 270-277. |
45 | Tsuji Y, Tanaka T, Ishida T. Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe[J]. Powder Technology, 1992, 71(3): 239-250. |
46 | Tsuji Y, Kawaguchi T, Tanaka T. Discrete particle simulation of two-dimensional fluidized bed[J]. Powder Technology, 1993, 77(1): 79-87. |
47 | 孙其诚, 金峰, 王光谦, 等. 二维颗粒体系单轴压缩形成的力链结构[J]. 物理学报, 2010, 59(1): 30-37. |
Sun Q C, Jin F, Wang G Q, et al. Force chains in a uniaxially compressed static granular matter in 2D[J]. Acta Physica Sinica, 2010, 59(1): 30-37. | |
48 | 陈波, 童培庆. 瓮模型中多粒子动力学的研究[J]. 物理学报, 2005, 54(12): 5554-5558. |
Chen B, Tong P Q. Dynamics of many particles in the urn model[J]. Acta Physica Sinica, 2005, 54(12): 5554-5558. | |
49 | 房明明. 循环流化床内稠密气固两相流动的DEM-LES模拟研究[D]. 杭州: 浙江大学, 2013. |
Fang M M. DEM-LES investigation of dense as-solid two-phase flows in circulating fluidized beds[D]. Hangzhou: Zhejiang University, 2013. | |
50 | 王立军, 赵惠君, 武振超, 等. 颗粒滚动摩擦系数对颗粒堆内部受力的影响[J]. 东北农业大学学报, 2018, 49(3): 65-72. |
Wang L J, Zhao H J, Wu Z C, et al. Effect of coefficient of rolling friction on internal force of particles pile[J]. Journal of Northeast Agricultural University, 2018, 49(3): 65-72. | |
51 | 赵永志, 程易, 郑津洋. 三方程线性弹性-阻尼DEM模型及碰撞参数确定[J]. 计算力学学报, 2009, 26(2): 239-244. |
Zhao Y Z, Cheng Y, Zheng J Y. Three-equation linear spring-dashpot DEM model and the determination of contact parameters[J]. Chinese Journal of Computational Mechanics, 2009, 26(2): 239-244. |
[1] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[2] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[3] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[4] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[5] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[6] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[7] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[8] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[9] | Xiaosong CHENG, Yonggao YIN, Chunwen CHE. Performance comparison of different working pairs on a liquid desiccant dehumidification system with vacuum regeneration [J]. CIESC Journal, 2023, 74(8): 3494-3501. |
[10] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[11] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[12] | Chen HAN, Youmin SITU, Bin ZHU, Jianliang XU, Xiaolei GUO, Haifeng LIU. Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater [J]. CIESC Journal, 2023, 74(8): 3266-3278. |
[13] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[14] | Kexin HUANG, Tong LI, Anqi LI, Mei LIN. Mode decomposition of flow field in T-junction with rotating impeller [J]. CIESC Journal, 2023, 74(7): 2848-2857. |
[15] | Fangzhe SHI, Yunhua GAN. Numerical simulation of start-up characteristics and heat transfer performance of ultra-thin heat pipe [J]. CIESC Journal, 2023, 74(7): 2814-2823. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 239
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 338
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||