CIESC Journal ›› 2022, Vol. 73 ›› Issue (6): 2669-2676.DOI: 10.11949/0438-1157.20211795
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Liyuan LI1(),Jianqiang WANG1,Yi CHEN1,Youdi GUO1,Jian ZHOU1,Zhicheng LIU1(),Yangdong WANG1,Zaiku XIE2
Received:
2021-12-21
Revised:
2022-02-18
Online:
2022-06-30
Published:
2022-06-05
Contact:
Zhicheng LIU
李丽媛1(),王建强1,陈奕1,郭友娣1,周健1,刘志成1(),王仰东1,谢在库2
通讯作者:
刘志成
作者简介:
李丽媛(1984—),女,博士,高工,基金资助:
CLC Number:
Liyuan LI, Jianqiang WANG, Yi CHEN, Youdi GUO, Jian ZHOU, Zhicheng LIU, Yangdong WANG, Zaiku XIE. Study on the mesoscale mechanism of coking and deactivation of ZSM-5 catalyst in methanol to propylene reaction[J]. CIESC Journal, 2022, 73(6): 2669-2676.
李丽媛, 王建强, 陈奕, 郭友娣, 周健, 刘志成, 王仰东, 谢在库. 甲醇制丙烯反应中ZSM-5分子筛催化剂积炭失活介尺度机制研究[J]. 化工学报, 2022, 73(6): 2669-2676.
1 | Martínez C, Corma A. Inorganic molecular sieves: preparation, modification and industrial application in catalytic processes[J]. Coordination Chemistry Reviews, 2011, 255(13/14): 1558-1580. |
2 | Guisnet M, Magnoux P, Martin D. Roles of acidity and pore structure in the deactivation of zeolites by carbonaceous deposits[J]. Studies in Surface Science and Catalysis, 1997, 111: 1-19. |
3 | Olsbye U, Svelle S, Bjørgen M, et al. Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity[J]. Angewandte Chemie (International Ed. in English), 2012, 51(24): 5810-5831. |
4 | Bleken F, Skistad W, Barbera K, et al. Conversion of methanol over 10-ring zeolites with differing volumes at channel intersections: comparison of TNU-9, IM-5, ZSM-11 and ZSM-5[J]. Physical Chemistry Chemical Physics: PCCP, 2011, 13(7): 2539-2549. |
5 | Hereijgers B P C, Bleken F, Nilsen M H, et al. Product shape selectivity dominates the methanol-to-olefins (MTO) reaction over H-SAPO-34 catalysts[J]. Journal of Catalysis, 2009, 264(1): 77-87. |
6 | Zakaria Z Y, Amin N A S, Linnekoski J. A perspective on catalytic conversion of glycerol to olefins[J]. Biomass and Bioenergy, 2013, 55: 370-385. |
7 | Khanmohammadi M, Amani S, Garmarudi A B, et al. Methanol-to-propylene process: perspective of the most important catalysts and their behavior[J]. Chinese Journal of Catalysis, 2016, 37(3): 325-339. |
8 | 郭春垒, 方向晨, 贾立明, 等. 分子筛催化剂积炭失活行为探讨[J]. 工业催化, 2011, 19(12): 15-20. |
Guo C L, Fang X C, Jia L M, et al. Investigation on coking deactivation behavior of molecular sieve catalysts[J]. Industrial Catalysis, 2011, 19(12): 15-20. | |
9 | Riaz A, Zahedi G, Klemeš J J. A review of cleaner production methods for the manufacture of methanol[J]. Journal of Cleaner Production, 2013, 57: 19-37. |
10 | Liu Z C, Wang Y D, Xie Z K. Thoughts on the future development of zeolitic catalysts from an industrial point of view[J]. Chinese Journal of Catalysis, 2012, 33(1): 22-38. |
11 | Asplund S. Coke formation and its effect on internal mass transfer and selectivity in Pd-catalysed acetylene hydrogenation[J]. Journal of Catalysis, 1996, 158(1): 267-278. |
12 | García-Ochoa F, Santos A. Coke effect in mass transport and morphology of Pt-Al2O3 and Ni-Mo-Al2O3 catalysts[J]. AIChE Journal, 1996, 42(2): 524-531. |
13 | Park J W, Lee J Y, Kim K S, et al. Effects of cage shape and size of 8-membered ring molecular sieves on their deactivation in methanol-to-olefin (MTO) reactions[J]. Applied Catalysis A: General, 2008, 339(1): 36-44. |
14 | Schulz H. “Coking” of zeolites during methanol conversion: basic reactions of the MTO-, MTP- and MTG processes[J]. Catalysis Today, 2010, 154(3/4): 183-194. |
15 | Wood J, Gladden L F. Effect of coke deposition upon pore structure and self-diffusion in deactivated industrial hydroprocessing catalysts[J]. Applied Catalysis A: General, 2003, 249(2): 241-253. |
16 | Mores D, Stavitski E, Kox M, et al. Space- and time-resolved in situ spectroscopy on the coke formation in molecular sieves: methanol-to-olefin conversion over H-ZSM-5 and H-SAPO-34[J]. Chemistry — A European Journal, 2008, 14(36): 11320-11327. |
17 | Chung Y M, Mores D, Weckhuysen B M. Spatial and temporal mapping of coke formation during paraffin and olefin aromatization in individual H-ZSM-5 crystals[J]. Applied Catalysis A: General, 2011, 404(1/2): 12-20. |
18 | Zhou F, Gao Y, Wu G, et al. Improved catalytic performance and decreased coke formation in post-treated ZSM-5 zeolites for methanol aromatization[J]. Microporous and Mesoporous Materials, 2017, 240: 96-107. |
19 | Valle B, Castaño P, Olazar M, et al. Deactivating species in the transformation of crude bio-oil with methanol into hydrocarbons on a HZSM-5 catalyst[J]. Journal of Catalysis, 2012, 285(1): 304-314. |
20 | 刘中民, 陈国权, 王清遐, 等. 分子筛催化剂的失活与积炭[J]. 催化学报, 1994(4):301-303. |
Liu Z M, Chen G Q, Wang Q X, et al. Deactivation and coke formation on zeolite catalysts[J]. Chinese Journal of Catalysis, 1994(4):301-303. | |
21 | Ducarme V, Vedrine J C. ZSM-5 and ZSM-11 zeolites: influence of morphological and chemical parameters on catalytic selectivity and deactivation[J]. Applied Catalysis, 1985, 17(1): 175-184. |
22 | Li C, Stair P C. Ultraviolet Raman spectroscopy characterization of coke formation in zeolites[J]. Catalysis Today, 1997, 33(1/2/3): 353-360. |
23 | Mores D, Kornatowski J, Olsbye U, et al. Coke formation during the methanol-to-olefin conversion: in situ microspectroscopy on individual H-ZSM-5 crystals with different brønsted acidity[J]. Chemistry — A European Journal, 2011, 17(10): 2874-2884. |
24 | 李丽媛, 陈奕, 许中强, 等. 烃类分子在分子筛中扩散行为研究进展[J]. 化工进展, 2014, 33(3): 655-659, 688. |
Li L Y, Chen Y, Xu Z Q, et al. Research advances in the diffusion of hydrocarbons in zeolites[J]. Chemical Industry and Engineering Progress, 2014, 33(3): 655-659, 688. | |
25 | 李丽媛, 陈奕, 许中强, 等. 均三甲苯在MCM-22和MCM-56分子筛上的吸附和扩散[J]. 工业催化, 2013, 21(7): 30-34. |
Li L Y, Chen Y, Xu Z Q, et al. Adsorption and diffusion of mesitylene on MCM-22 and MCM-56 molecular sieves[J]. Industrial Catalysis, 2013, 21(7): 30-34. | |
26 | Zhou J, Liu Z C, Li L Y, et al. Hierarchical mesoporous ZSM-5 zeolite with increased external surface acid sites and high catalytic performance in o-xylene isomerization[J]. Chinese Journal of Catalysis, 2013, 34(7): 1429-1433. |
27 | Zhou J, Liu Z C, Wang Y D, et al. Enhanced accessibility and utilization efficiency of acid sites in hierarchical MFI zeolite catalyst for effective diffusivity improvement[J]. RSC Adv., 2014, 4(82): 43752-43755. |
28 | Zhou J, Wang Y D, Zou W, et al. Mass transfer advantage of hierarchical zeolites promotes methanol converting into para-methyl group in toluene methylation[J]. Industrial & Engineering Chemistry Research, 2017, 56(33): 9310-9321. |
29 | Zhai M, Li L Y, Ba Y L, et al. Fabricating ZSM-23 with reduced aspect ratio through ball-milling and recrystallization: synthesis, structure and catalytic performance in n-heptane hydroisomerization[J]. Catalysis Today, 2019, 329: 82-93. |
30 | Sun M H, Zhou J, Hu Z Y, et al. Hierarchical zeolite single-crystal reactor for excellent catalytic efficiency[J]. Matter, 2020, 3(4): 1226-1245. |
31 | Zhu W, Kapteijn F, van der Linden B, et al. Equilibrium adsorption of linear and branched C6 alkanes on silicalite-1 studied by the tapered element oscillating microbalance[J]. Physical Chemistry Chemical Physics, 2001, 3(9): 1755-1761. |
32 | Schmidt F, Hoffmann C, Giordanino F, et al. Coke location in microporous and hierarchical ZSM-5 and the impact on the MTH reaction[J]. Journal of Catalysis, 2013, 307: 238-245. |
33 | Rostamizadeh M, Yaripour F. Dealumination of high silica H-ZSM-5 as long-lived nanocatalyst for methanol to olefin conversion[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 71: 454-463. |
34 | 忻睦迪, 邢恩会. 三甲基膦和金属氧化物复合改性ZSM-5分子筛及其裂解性能研究[J]. 化工学报, 2021, 72(5): 2657-2668. |
Xin M D, Xing E H. Researches on trimethylphosphine and metal oxide modification on ZSM-5 and their influence on catalytic cracking[J]. CIESC Journal, 2021, 72(5): 2657-2668. | |
35 | Karge H G, Nießen W, Bludau H. In-situ FTIR measurements of diffusion in coking zeolite catalysts[J]. Applied Catalysis A: General, 1996, 146(2): 339-349. |
36 | Park J W, Seo G. IR study on methanol-to-olefin reaction over zeolites with different pore structures and acidities[J]. Applied Catalysis A: General, 2009, 356(2): 180-188. |
37 | Kerssens M M, Sprung C, Whiting G T, et al. Selective staining of zeolite acidity: recent progress and future perspectives on fluorescence microscopy[J]. Microporous and Mesoporous Materials, 2014, 189: 136-143. |
38 | Bjørgen M, Olsbye U, Kolboe S. Coke precursor formation and zeolite deactivation: mechanistic insights from hexamethylbenzene conversion[J]. Journal of Catalysis, 2003, 215(1): 30-44. |
39 | Janssens T V W, Svelle S, Olsbye U. Kinetic modeling of deactivation profiles in the methanol-to-hydrocarbons (MTH) reaction: a combined autocatalytic-hydrocarbon pool approach[J]. Journal of Catalysis, 2013, 308: 122-130. |
[1] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[2] | Bingchun SHENG, Jianguo YU, Sen LIN. Study on lithium resource separation from underground brine with high concentration of sodium by aluminum-based lithium adsorbent [J]. CIESC Journal, 2023, 74(8): 3375-3385. |
[3] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[4] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[5] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[6] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[7] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[8] | Jie WANG, Xiaolin QIU, Ye ZHAO, Xinyang LIU, Zhongqiang HAN, Yong XU, Wenhan JIANG. Preparation and properties of polyelectrolyte electrostatic deposition modified PHBV antioxidant films [J]. CIESC Journal, 2023, 74(7): 3068-3078. |
[9] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[10] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[11] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[12] | Chenxin LI, Yanqiu PAN, Liu HE, Yabin NIU, Lu YU. Carbon membrane model based on carbon microcrystal structure and its gas separation simulation [J]. CIESC Journal, 2023, 74(5): 2057-2066. |
[13] | Shaoyun CHEN, Dong XU, Long CHEN, Yu ZHANG, Yuanfang ZHANG, Qingliang YOU, Chenglong HU, Jian CHEN. Preparation and adsorption properties of monolayer polyaniline microsphere arrays [J]. CIESC Journal, 2023, 74(5): 2228-2238. |
[14] | Tianhao BAI, Xiaowen WANG, Mengzi YANG, Xinwei DUAN, Jie MI, Mengmeng WU. Study on release and inhibition behavior of COS during high-temperature gas desulfurization process using Zn-based oxide derived from hydrotalcite [J]. CIESC Journal, 2023, 74(4): 1772-1780. |
[15] | Zijian WANG, Ming KE, Jiahan LI, Shuting LI, Jinru SUN, Yanbing TONG, Zhiping ZHAO, Jiaying LIU, Lu REN. Progress in preparation and application of short b-axis ZSM-5 molecular sieve [J]. CIESC Journal, 2023, 74(4): 1457-1473. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 454
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 417
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||