CIESC Journal ›› 2022, Vol. 73 ›› Issue (7): 3182-3192.DOI: 10.11949/0438-1157.20220156
• Surface and interface engineering • Previous Articles Next Articles
Xiaolan WEI1(),Wenjie QI1,Jing DING2,Jianfeng LU2,Weilong WANG2,Shule LIU2
Received:
2022-01-26
Revised:
2022-05-04
Online:
2022-08-01
Published:
2022-07-05
Contact:
Xiaolan WEI
魏小兰1(),戚文杰1,丁静2,陆建峰2,王维龙2,刘书乐2
通讯作者:
魏小兰
作者简介:
魏小兰(1963—),女,教授,基金资助:
CLC Number:
Xiaolan WEI, Wenjie QI, Jing DING, Jianfeng LU, Weilong WANG, Shule LIU. Effect of valence state of chromium in molten chloride salt on corrosivity of nickel-based alloy[J]. CIESC Journal, 2022, 73(7): 3182-3192.
魏小兰, 戚文杰, 丁静, 陆建峰, 王维龙, 刘书乐. 氯化物熔盐中铬的价态对镍基合金腐蚀性的影响[J]. 化工学报, 2022, 73(7): 3182-3192.
Add to citation manager EndNote|Ris|BibTeX
镍基合金 | 元素组成/% | |||||||
---|---|---|---|---|---|---|---|---|
Ni | Cr | Mo | Fe | W | Co | Mn | V | |
HB-2 | 65.0~70.0 | 0.4~0.7 | 26.0~30.0 | 1.6~2.0 | — | ≤1.0 | ≤1.0 | — |
HC-276 | 51.0~59.0 | 14.5~16.5 | 15.0~17.0 | 4.0~7.0 | 3.0~4.5 | ≤2.5 | ≤1.0 | ≤0.35 |
HX | 42.0~52.0 | 20.5~23.0 | 8.0~10.0 | 17.0~20.0 | 0.2~1.0 | 0.5~2.5 | ≤1.0 | — |
Table 1 Chemical composition of three nickel base alloys
镍基合金 | 元素组成/% | |||||||
---|---|---|---|---|---|---|---|---|
Ni | Cr | Mo | Fe | W | Co | Mn | V | |
HB-2 | 65.0~70.0 | 0.4~0.7 | 26.0~30.0 | 1.6~2.0 | — | ≤1.0 | ≤1.0 | — |
HC-276 | 51.0~59.0 | 14.5~16.5 | 15.0~17.0 | 4.0~7.0 | 3.0~4.5 | ≤2.5 | ≤1.0 | ≤0.35 |
HX | 42.0~52.0 | 20.5~23.0 | 8.0~10.0 | 17.0~20.0 | 0.2~1.0 | 0.5~2.5 | ≤1.0 | — |
Fig.3 Micromorphology of surface of HB-2, HC-276 and HX after corrosion at 600℃ for 100 h in BS (a), BS-Cr0 (b), BS-Cr2+ (c) and BS-Cr3+ (d) molten salts
熔盐 | 含量/%(质量) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
HB-2 | HC-276 | HX | ||||||||||
Cr | Fe | Mo | Ni | Cr | Fe | Mo | Ni | Cr | Fe | Mo | Ni | |
腐蚀前 | 0.5 | 1.8 | 28.0 | 69.8 | 14.0 | 5.3 | 13.9 | 53.4 | 22.0 | 18.1 | 8.5 | 50.1 |
加Cr0 | 1.3 | 1.6 | 29.3 | 68.5 | 8.7 | 3.3 | 18.7 | 57.5 | 21.6 | 17.0 | 8.8 | 52.1 |
加CrCl2 | 0.8 | 1.8 | 26.5 | 70.1 | 10.7 | 4.2 | 14.0 | 54.2 | 17.2 | 11.9 | 8.6 | 62.2 |
加CrCl3 | 0.6 | 1.8 | 29.2 | 68.4 | 5.4 | 2.0 | 13.7 | 75.1 | 14.9 | 6.9 | 6.6 | 71.6 |
Table 2 Content of main metal elements before and after corrosion of HB-2, HC-276 and HX analyzed by EDS
熔盐 | 含量/%(质量) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
HB-2 | HC-276 | HX | ||||||||||
Cr | Fe | Mo | Ni | Cr | Fe | Mo | Ni | Cr | Fe | Mo | Ni | |
腐蚀前 | 0.5 | 1.8 | 28.0 | 69.8 | 14.0 | 5.3 | 13.9 | 53.4 | 22.0 | 18.1 | 8.5 | 50.1 |
加Cr0 | 1.3 | 1.6 | 29.3 | 68.5 | 8.7 | 3.3 | 18.7 | 57.5 | 21.6 | 17.0 | 8.8 | 52.1 |
加CrCl2 | 0.8 | 1.8 | 26.5 | 70.1 | 10.7 | 4.2 | 14.0 | 54.2 | 17.2 | 11.9 | 8.6 | 62.2 |
加CrCl3 | 0.6 | 1.8 | 29.2 | 68.4 | 5.4 | 2.0 | 13.7 | 75.1 | 14.9 | 6.9 | 6.6 | 71.6 |
Fig.4 Microstructure of cross section of HB-2, HC-276 and HX after corrosion at 600℃ for 100 h in BS (a), BS-Cr0 (b), BS-Cr2+ (c) and BS-Cr3+ (d) molten salts
金属氯化物 | |
---|---|
CrCl2 | -273.7 |
CrCl3 | -339.0 |
NiCl2 | -169.8 |
MoCl2 | -153.3 |
MoCl3 | -245.1 |
FeCl2 | -225.8 |
FeCl3(g) | -237.7 |
Table 3 Molar Gibbs free energy of formation of metal chloride at 600℃
金属氯化物 | |
---|---|
CrCl2 | -273.7 |
CrCl3 | -339.0 |
NiCl2 | -169.8 |
MoCl2 | -153.3 |
MoCl3 | -245.1 |
FeCl2 | -225.8 |
FeCl3(g) | -237.7 |
1 | Shahabuddin M, Alim M A, Alam T, et al. A critical review on the development and challenges of concentrated solar power technologies[J]. Sustainable Energy Technologies and Assessments, 2021, 47: 101434. |
2 | Alva G, Lin Y X, Fang G Y. An overview of thermal energy storage systems[J]. Energy, 2018, 144: 341-378. |
3 | Kruizenga, Alan M. Corrosion mechanisms in chloride and carbonate salts [R]. Office of Scientific and Technical Information (OSTI), 2012. |
4 | 魏小兰, 谢佩, 张雪钏, 等. 氯化物熔盐材料的制备及其热物理性质研究[J]. 化工学报, 2020, 71(5): 2423-2431. |
Wei X L, Xie P, Zhang X C, et al. Research on preparation and thermodynamic properties of chloride molten salt materials[J]. CIESC Journal, 2020, 71(5): 2423-2431. | |
5 | Fernández A G, Gomez-Vidal J, Oró E, et al. Mainstreaming commercial CSP systems: a technology review[J]. Renewable Energy, 2019, 140: 152-176. |
6 | Ding W J, Bauer T. Progress in research and development of molten chloride salt technology for next generation concentrated solar power plants[J]. Engineering, 2021, 7(3): 334-347. |
7 | Liu B, Wei X L, Wang W L, et al. Corrosion behavior of Ni-based alloys in molten NaCl-CaCl2-MgCl2 eutectic salt for concentrating solar power[J]. Solar Energy Materials and Solar Cells, 2017, 170: 77-86. |
8 | Liu Q, Wang Z R, Liu W H, et al. Ni-Mo-Cr alloy corrosion in molten NaCl-KCl-MgCl2 salt and vapour[J]. Corrosion Science, 2021, 180: 109183. |
9 | Sun H, Wang J Q, Li Z J, et al. Corrosion behavior of 316SS and Ni-based alloys in a ternary NaCl-KCl-MgCl2 molten salt[J]. Solar Energy, 2018, 171: 320-329. |
10 | Raiman S S, Lee S. Aggregation and data analysis of corrosion studies in molten chloride and fluoride salts[J]. Journal of Nuclear Materials, 2018, 511: 523-535. |
11 | Sun H, Zhang P, Wang J Q. Effects of alloying elements on the corrosion behavior of Ni-based alloys in molten NaCl-KCl-MgCl2 salt at different temperatures[J]. Corrosion Science, 2018, 143: 187-199. |
12 | Ding W J, Gomez-Vidal J, Bonk A, et al. Molten chloride salts for next generation CSP plants: electrolytical salt purification for reducing corrosive impurity level[J]. Solar Energy Materials and Solar Cells, 2019, 199: 8-15. |
13 | Sun H, Wang J Q, Tang Z F, et al. Assessment of effects of Mg treatment on corrosivity of molten NaCl-KCl-MgCl2 salt with Raman and infrared spectra[J]. Corrosion Science, 2020, 164: 108350. |
14 | Williams D F, Toth L M, Clarno K T. Assessment of candidate molten salt coolants for the advanced high temperature reactor (AHTR) [R]. Office of Scientific and Technical Information (OSTI), 2006. |
15 | Bawane K, Manganaris P, Wang Y C, et al. Determining oxidation states of transition metals in molten salt corrosion using electron energy loss spectroscopy[J]. Scripta Materialia, 2021, 197: 113790. |
16 | 王学良. 金属Ni、Cr和Fe在氯化物熔盐中的腐蚀行为及机理研究[D]. 北京: 中国科学院大学(上海应用物理研究所), 2020. |
Wang X L. Investigation on the corrosion behavior and mechanism of metallic Ni, Cr and Fe in molten chloride salts[D]. Beijing: University of Chinese Academy of Sciences (Shanghai Institute of Applied Physics), 2020. | |
17 | 彭浩. 氟熔盐体系腐蚀杂质及氧化物溶解行为的研究[D]. 北京: 中国科学院大学(上海应用物理研究所), 2017. |
Peng H. Study on dissolution behavious of corrosive impurities and oxides in molten fluorides[D]. Beijing: University of Chinese Academy of Sciences (Shanghai Institute of Applied Physics), 2017. | |
18 | 阴慧琴. 腐蚀产物CrF3对LiF-NaF-KF熔盐物化性质的影响研究[D]. 北京: 中国科学院大学(上海应用物理研究所), 2015. |
Yin H Q. The effect study of corrosion product CrF3 on physico-chemical properties of LiF-NaF-KF[D]. Beijing: University of Chinese Academy of Sciences (Shanghai Institute of Applied Physics), 2015. | |
19 | Xu L K, Huang Z F, Jia M Y, et al. Microstructural and diffusive properties of Cr solute in MgCl2-NaCl-KCl eutectic: a first-principles molecular dynamics study[J]. Journal of Molecular Liquids, 2021, 341: 117321. |
20 | Zhang J, Fuller J, An Q. Coordination and thermophysical properties of transition metal chloro complexes in LiCl-KCl eutectic[J]. The Journal of Physical Chemistry B, 2021, 125(31): 8876-8887. |
21 | 张汝松, 李志国, 刘昌峰. 哈氏合金的选用[J]. 石油化工腐蚀与防护, 2012, 29(1): 33-35. |
Zhang R S, Li Z G, Liu C F. Selection of Hastelloy steel[J]. Corrosion & Protection in Petrochemical Industry, 2012, 29(1): 33-35. | |
22 | Wei X L, Song M, Wang W L, et al. Design and thermal properties of a novel ternary chloride eutectics for high-temperature solar energy storage[J]. Applied Energy, 2015, 156: 306-310. |
23 | Du L C, Ding J, Tian H Q, et al. Thermal properties and thermal stability of the ternary eutectic salt NaCl-CaCl2-MgCl2 used in high-temperature thermal energy storage process[J]. Applied Energy, 2017, 204: 1225-1230. |
24 | Tian H Q, Wang W L, Ding J, et al. Thermal performance and economic evaluation of NaCl-CaCl2 eutectic salt for high-temperature thermal energy storage[J]. Energy, 2021, 227: 120412. |
25 | Marcus P, Maurice V, Strehblow H H. Localized corrosion (pitting): a model of passivity breakdown including the role of the oxide layer nanostructure[J]. Corrosion Science, 2008, 50(9): 2698-2704. |
26 | Yin H Q, Qiu J, Liu H J, et al. Effect of CrF3 on the corrosion behaviour of Hastelloy-N and 316L stainless steel alloys in FLiNaK molten salt[J]. Corrosion Science, 2018, 131: 355-364. |
27 | Guo S Q, Zhang J S, Wu W, et al. Corrosion in the molten fluoride and chloride salts and materials development for nuclear applications[J]. Progress in Materials Science, 2018, 97: 448-487. |
28 | 陈浩. 熔盐法制备氧化镁及含镁尖晶石粉体的研究[D]. 武汉: 武汉科技大学, 2010. |
Chen H. Preparation of magnesia and magnesia-containing spinel powders by molten salt method[D]. Wuhan: Wuhan University of Science and Technology, 2010. | |
29 | Ding W J, Bonk A, Bauer T. Corrosion behavior of metallic alloys in molten chloride salts for thermal energy storage in concentrated solar power plants: a review[J]. Frontiers of Chemical Science & Engineering, 2018, 12(3): 564-576. |
30 | Ozeryanaya I N. Corrosion of metals by molten salts in heat-treatment processes[J]. Metal Science and Heat Treatment, 1985, 27(3): 184-188. |
31 | Kruizenga A. Corrosion mechanisms in chloride and carbonate salts [R]. Office of Scientific and Technical Information (OSTI), 2012. |
32 | Vignarooban K, Xu X H, Wang K, et al. Vapor pressure and corrosivity of ternary metal-chloride molten-salt based heat transfer fluids for use in concentrating solar power systems[J]. Applied Energy, 2015, 159: 206-213. |
33 | Ding W J, Shi H, Xiu Y L, et al. Hot corrosion behavior of commercial alloys in thermal energy storage material of molten MgCl2/KCl/NaCl under inert atmosphere[J]. Solar Energy Materials and Solar Cells, 2018, 184: 22-30. |
34 | Ding W J, Shi H, Jianu A, et al. Molten chloride salts for next generation concentrated solar power plants: mitigation strategies against corrosion of structural materials[J]. Solar Energy Materials and Solar Cells, 2019, 193: 298-313. |
35 | 大连理工大学无机化学教研室. 无机化学[M]. 5版. 北京: 高等教育出版社, 2006. |
Department of Inorganic Chemistry, Dalian University of Technology. Inorganic Chemistry[M]. 5th ed. Beijing: Higher Education Press, 2006. | |
36 | 刘波, 魏小兰, 王维龙, 等. In625合金和316L不锈钢在NaCl-CaCl2-MgCl2熔盐中的腐蚀机理[J]. 化工学报, 2017, 68(8): 3202-3210. |
Liu B, Wei X L, Wang W L, et al. Corrosion behavior of In625 alloy and 316L stainless steel in NaCl-CaCl2-MgCl2 ternary eutectic molten salt[J]. CIESC Journal, 2017, 68(8): 3202-3210. |
[1] | Fei KANG, Weiguang LYU, Feng JU, Zhi SUN. Research on discharge path and evaluation of spent lithium-ion batteries [J]. CIESC Journal, 2023, 74(9): 3903-3911. |
[2] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[3] | Jing ZHAO, Chengwen GU, Xigao JIAN, Zhihuan WENG. Preparation and performance evaluation of magnolol-based epoxy resin anti-corrosion coatings [J]. CIESC Journal, 2023, 74(7): 3010-3017. |
[4] | Yanhui LI, Shaoming DING, Zhouyang BAI, Yinan ZHANG, Zhihong YU, Limei XING, Pengfei GAO, Yongzhen WANG. Corrosion micro-nano scale kinetics model development and application in non-conventional supercritical boilers [J]. CIESC Journal, 2023, 74(6): 2436-2446. |
[5] | Guoqing SU, Jianwen ZHANG, Yan LI. Study on the occurrence and development mechanism of pipeline corrosion behind butterfly valve [J]. CIESC Journal, 2022, 73(12): 5504-5516. |
[6] | LIANG Xingtang, LI Fengzhi, ZHONG Shuming, ZHANG Ruirui, JIAO Shufei, WANG Shuangshuang, YIN Yanzhen. In-situ modification of porous juncus with polyethyleneimine for efficient capture of Cr(Ⅵ) from wastewater [J]. CIESC Journal, 2021, 72(6): 3380-3389. |
[7] | LI Haiyan, LIU Huan, ZHANG Xiuju, WANG Geyi, ZHOU Qiaoyan, CHEN Tongzhou, YAO Hong. Summary of improving erosion and corrosion resistance of heat exchange surfaces in boilers through HVOF technology [J]. CIESC Journal, 2021, 72(4): 1833-1846. |
[8] | TAN Zhuowei, YANG Liuyang, WANG Zhenbo, DOU Xiaohui, ZHANG Dalei, ZHANG Mingyang, JIN Youhai. Study on interaction mechanism of local turbulent flow induced by local corrosion of X80 pipeline steel in high shear flow field [J]. CIESC Journal, 2021, 72(4): 2203-2212. |
[9] | HE Jizhe, LIU Mingyan, XU Yangshuhan. Study on anticorrosive properties of epoxy soybean oil resin coating [J]. CIESC Journal, 2021, 72(2): 1067-1077. |
[10] | Yuzhu CAO,Xin LU,Litong WANG,Manlin YUAN,Zhong XIN. Preparation and anticorrosion properties of bio-based polybenzoxazine/cellulose nanocrystals superhydrophobic coating [J]. CIESC Journal, 2021, 72(11): 5717-5725. |
[11] | Jian LI, Ge PU, Jiashan CHEN, Qiwen LIU. High-temperature volatility characteristics and pyrolysis mechanism of common sodium salts [J]. CIESC Journal, 2020, 71(8): 3452-3459. |
[12] | Wenhui ZHU, Xiahui WANG, Xintong YANG, Xingrun WANG, Jun HE, Guoxin HUANG, Guohua JI. Mechanisms of anti-agglomeration and anti-clogging by using zero-valent iron entrapmented in calcium alginate beads [J]. CIESC Journal, 2020, 71(5): 2344-2351. |
[13] | Tianyu ZHENG, Lu WANG, Jinyan LIU, Jia WANG. Corrosion inhibition of ionic liquids on the surface of Q235 steel in methanol/sulfuric acid medium [J]. CIESC Journal, 2020, 71(5): 2230-2239. |
[14] | Aimin TU, Shijie LIU, Xun MO, Dongsheng ZHU, Yinde YIN. Feasibility study of spiral twisted tube for gas turbine inlet temperature regulating heat exchanger [J]. CIESC Journal, 2020, 71(4): 1562-1569. |
[15] | Lei LIU, Yue ZHANG, Xia LI, Jinglei LEI, Lingjie LI. Preparation and characterization of durable superhydrophobic protective coatings on aluminum alloy [J]. CIESC Journal, 2020, 71(10): 4750-4759. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||