CIESC Journal ›› 2023, Vol. 74 ›› Issue (9): 3903-3911.DOI: 10.11949/0438-1157.20230759
• Energy and environmental engineering • Previous Articles Next Articles
Fei KANG1,2,3(), Weiguang LYU2,3, Feng JU4, Zhi SUN1,2,3()
Received:
2023-07-21
Revised:
2023-09-02
Online:
2023-11-20
Published:
2023-09-25
Contact:
Zhi SUN
康飞1,2,3(), 吕伟光2,3, 巨锋4, 孙峙1,2,3()
通讯作者:
孙峙
作者简介:
康飞(1988—),男,博士研究生,助理研究员,kangfei0604@126.com
基金资助:
CLC Number:
Fei KANG, Weiguang LYU, Feng JU, Zhi SUN. Research on discharge path and evaluation of spent lithium-ion batteries[J]. CIESC Journal, 2023, 74(9): 3903-3911.
康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911.
Add to citation manager EndNote|Ris|BibTeX
碳钢外壳 | 正极材料 | 铝箔 | 负极材料 | 铜箔 | 其他 |
---|---|---|---|---|---|
20.56% |
Table 1 Main components of 18650 cylindrical lithium-ion battery
碳钢外壳 | 正极材料 | 铝箔 | 负极材料 | 铜箔 | 其他 |
---|---|---|---|---|---|
20.56% |
正极半反应 | E0/V | 编号 |
---|---|---|
Fe(s) | ||
Fe2+(aq) | ||
2Mn2+(aq)+3H2O(l) | -1.49 | |
2NH | -1.28 | |
2CO | -1.90~-1.95 | |
4HCO |
Table 2 Competitive oxidation reaction and theoretical potential of positive electrode
正极半反应 | E0/V | 编号 |
---|---|---|
Fe(s) | ||
Fe2+(aq) | ||
2Mn2+(aq)+3H2O(l) | -1.49 | |
2NH | -1.28 | |
2CO | -1.90~-1.95 | |
4HCO |
负极半反应 | E0/V | 编号 |
---|---|---|
Na+(aq)+e- | ||
2NH | ≥-0.83 | |
Fe3+(aq)+e- | ||
Fe2+(aq)+2e- | ||
-1.19 | ||
Ni2+(aq)+ | -0.26 | |
SO | 0.17 | |
SO | -0.93 |
Table 3 Competitive reduction reaction and theoretical potential of negative electrode
负极半反应 | E0/V | 编号 |
---|---|---|
Na+(aq)+e- | ||
2NH | ≥-0.83 | |
Fe3+(aq)+e- | ||
Fe2+(aq)+2e- | ||
-1.19 | ||
Ni2+(aq)+ | -0.26 | |
SO | 0.17 | |
SO | -0.93 |
放电溶液 | 初始pH | 初始电导率/ (mS/cm) | 放电溶液 | 初始pH | 初始电导率/(mS/cm) |
---|---|---|---|---|---|
自来水 | 8.00 | 0.47 | 氯化铁 | 1.40 | 41.33 |
纯水 | 8.40 | 0.07 | 氯化铜 | 3.25 | 51.57 |
碳酸钠 | 11.32 | 48.73 | 氯化锰 | 5.22 | 39.03 |
碳酸钾 | 11.92 | 61.23 | 硫酸钠 | 5.73 | 45.43 |
碳酸氢钠 | 8.36 | 34.50 | 硫酸钾 | 6.43 | 50.73 |
碳酸铵 | 9.43 | 54.20 | 硫酸亚铁 | 3.53 | 22.43 |
氯化钠 | 6.57 | 74.23 | 硫酸铜 | 3.65 | 21.17 |
氯化钾 | 5.66 | 76.63 | 硫酸锰 | 3.87 | 20.57 |
Table 4 Initial pH and conductivity of different discharge solutions
放电溶液 | 初始pH | 初始电导率/ (mS/cm) | 放电溶液 | 初始pH | 初始电导率/(mS/cm) |
---|---|---|---|---|---|
自来水 | 8.00 | 0.47 | 氯化铁 | 1.40 | 41.33 |
纯水 | 8.40 | 0.07 | 氯化铜 | 3.25 | 51.57 |
碳酸钠 | 11.32 | 48.73 | 氯化锰 | 5.22 | 39.03 |
碳酸钾 | 11.92 | 61.23 | 硫酸钠 | 5.73 | 45.43 |
碳酸氢钠 | 8.36 | 34.50 | 硫酸钾 | 6.43 | 50.73 |
碳酸铵 | 9.43 | 54.20 | 硫酸亚铁 | 3.53 | 22.43 |
氯化钠 | 6.57 | 74.23 | 硫酸铜 | 3.65 | 21.17 |
氯化钾 | 5.66 | 76.63 | 硫酸锰 | 3.87 | 20.57 |
溶液 | 气体成分/% | ||||||
---|---|---|---|---|---|---|---|
氢气 | 二氧化碳 | 氧气 | 氮气 | 甲烷 | 一氧 化碳 | 总计 | |
纯水 | 60.75 | 0.82 | 6.62 | 24.59 | 0.55 | 0.02 | 99.97 |
自来水 | 71.22 | 1.83 | 2.23 | 18.95 | 0.54 | 0 | 99.87 |
碳酸钠 | 63.42 | 0 | 25.34 | 8.85 | 0 | 0 | 99.99 |
碳酸钾 | 65.54 | 0.02 | 26.29 | 6.42 | 0 | 0 | 100 |
碳酸氢钠 | 58.71 | 5.06 | 26.36 | 7.75 | 0.03 | 0 | 100 |
碳酸铵 | 71.64 | 0.52 | 11.54 | 12.84 | 0 | 0 | 100 |
氯化钠 | 64.99 | 0.13 | 3.07 | 24.86 | 0.25 | 0.01 | 100 |
氯化钾 | 78.90 | 0.08 | 1.34 | 15.28 | 0.28 | 0.01 | 100 |
氯化铁 | 80.50 | 0.67 | 1.47 | 12.68 | 1.17 | 0.02 | 99.92 |
氯化铜 | 79.42 | 1.42 | 0.39 | 13.51 | 1.50 | 0.03 | 99.91 |
氯化锰 | 76.62 | 1.18 | 1.62 | 15.54 | 0.68 | 0.04 | 99.86 |
硫酸钠 | 58.26 | 0.03 | 24.06 | 13.91 | 0 | 0 | 100 |
硫酸钾 | 55.70 | 0.04 | 21.18 | 18.17 | 0 | 0.02 | 100 |
硫酸亚铁 | 49.02 | 0.09 | 8.01 | 33.69 | 0.11 | 0.01 | 100 |
硫酸铜 | 36.10 | 0.65 | 9.71 | 41.55 | 0.72 | 0.06 | 99.98 |
硫酸锰 | 65.12 | 0.04 | 23.92 | 8.56 | 0.05 | 0.01 | 100 |
Table 5 Gas composition and content of different discharge solutions
溶液 | 气体成分/% | ||||||
---|---|---|---|---|---|---|---|
氢气 | 二氧化碳 | 氧气 | 氮气 | 甲烷 | 一氧 化碳 | 总计 | |
纯水 | 60.75 | 0.82 | 6.62 | 24.59 | 0.55 | 0.02 | 99.97 |
自来水 | 71.22 | 1.83 | 2.23 | 18.95 | 0.54 | 0 | 99.87 |
碳酸钠 | 63.42 | 0 | 25.34 | 8.85 | 0 | 0 | 99.99 |
碳酸钾 | 65.54 | 0.02 | 26.29 | 6.42 | 0 | 0 | 100 |
碳酸氢钠 | 58.71 | 5.06 | 26.36 | 7.75 | 0.03 | 0 | 100 |
碳酸铵 | 71.64 | 0.52 | 11.54 | 12.84 | 0 | 0 | 100 |
氯化钠 | 64.99 | 0.13 | 3.07 | 24.86 | 0.25 | 0.01 | 100 |
氯化钾 | 78.90 | 0.08 | 1.34 | 15.28 | 0.28 | 0.01 | 100 |
氯化铁 | 80.50 | 0.67 | 1.47 | 12.68 | 1.17 | 0.02 | 99.92 |
氯化铜 | 79.42 | 1.42 | 0.39 | 13.51 | 1.50 | 0.03 | 99.91 |
氯化锰 | 76.62 | 1.18 | 1.62 | 15.54 | 0.68 | 0.04 | 99.86 |
硫酸钠 | 58.26 | 0.03 | 24.06 | 13.91 | 0 | 0 | 100 |
硫酸钾 | 55.70 | 0.04 | 21.18 | 18.17 | 0 | 0.02 | 100 |
硫酸亚铁 | 49.02 | 0.09 | 8.01 | 33.69 | 0.11 | 0.01 | 100 |
硫酸铜 | 36.10 | 0.65 | 9.71 | 41.55 | 0.72 | 0.06 | 99.98 |
硫酸锰 | 65.12 | 0.04 | 23.92 | 8.56 | 0.05 | 0.01 | 100 |
溶液 | 金属含量/mg | |||||||
---|---|---|---|---|---|---|---|---|
Li | Co | Mn | Ni | Al | Fe | Cu | 总和 | |
纯水 | 3.43 | 0.09 | 1.81 | 11.16 | 21.39 | 684.07 | 1.39 | 723.34 |
自来水 | 2.22 | 0.22 | 2.67 | 7.51 | 79.51 | 926.80 | 0.24 | 1019.17 |
碳酸钠 | 0.15 | 0.00 | 0.00 | 0.00 | 42.64 | 0.88 | 0.40 | 44.07 |
碳酸钾 | 0.08 | 0.08 | 0.08 | 0.10 | 67.66 | 3.53 | 3.69 | 75.22 |
碳酸氢钠 | 0.15 | 0.16 | 0.00 | 8.40 | 0.24 | 4.24 | 7.76 | 20.95 |
碳酸铵 | 0.17 | 0.13 | 0.18 | 30.29 | 0.48 | 41.02 | 7.40 | 79.67 |
氯化钠 | 3.46 | 1.31 | 3.95 | 19.40 | 152.23 | 817.13 | 0.31 | 997.79 |
氯化钾 | 5.34 | 1.21 | 2.92 | 12.57 | 218.43 | 837.70 | 1.34 | 1079.51 |
氯化铁 | 6.10 | 0.39 | 17.69 | 42.65 | 330.05 | — | 2.06 | 398.94 |
氯化铜 | 4.18 | 0.36 | 8.32 | 40.51 | 288.05 | 2170.68 | — | 2512.10 |
氯化锰 | 3.25 | 0.74 | — | 18.66 | 173.76 | 1262.75 | 1.04 | 1460.20 |
硫酸钠 | 0.25 | 0.09 | 0.92 | 27.61 | 3.36 | 247.88 | 0.33 | 280.44 |
硫酸钾 | 1.19 | 0.05 | 4.87 | 17.44 | 179.58 | 1050.98 | 0.66 | 1254.77 |
硫酸亚铁 | 0.34 | 1.87 | 23.59 | 12.43 | 2.85 | — | 42.07 | 83.15 |
硫酸铜 | 0.08 | 0.56 | 83.79 | 32.08 | 50.97 | 2200.51 | — | 2367.99 |
硫酸锰 | 0.08 | 0.85 | — | 42.93 | 6.46 | 315.70 | 0.88 | 366.90 |
Table 6 Total metal content in solid-liquid phase after discharge
溶液 | 金属含量/mg | |||||||
---|---|---|---|---|---|---|---|---|
Li | Co | Mn | Ni | Al | Fe | Cu | 总和 | |
纯水 | 3.43 | 0.09 | 1.81 | 11.16 | 21.39 | 684.07 | 1.39 | 723.34 |
自来水 | 2.22 | 0.22 | 2.67 | 7.51 | 79.51 | 926.80 | 0.24 | 1019.17 |
碳酸钠 | 0.15 | 0.00 | 0.00 | 0.00 | 42.64 | 0.88 | 0.40 | 44.07 |
碳酸钾 | 0.08 | 0.08 | 0.08 | 0.10 | 67.66 | 3.53 | 3.69 | 75.22 |
碳酸氢钠 | 0.15 | 0.16 | 0.00 | 8.40 | 0.24 | 4.24 | 7.76 | 20.95 |
碳酸铵 | 0.17 | 0.13 | 0.18 | 30.29 | 0.48 | 41.02 | 7.40 | 79.67 |
氯化钠 | 3.46 | 1.31 | 3.95 | 19.40 | 152.23 | 817.13 | 0.31 | 997.79 |
氯化钾 | 5.34 | 1.21 | 2.92 | 12.57 | 218.43 | 837.70 | 1.34 | 1079.51 |
氯化铁 | 6.10 | 0.39 | 17.69 | 42.65 | 330.05 | — | 2.06 | 398.94 |
氯化铜 | 4.18 | 0.36 | 8.32 | 40.51 | 288.05 | 2170.68 | — | 2512.10 |
氯化锰 | 3.25 | 0.74 | — | 18.66 | 173.76 | 1262.75 | 1.04 | 1460.20 |
硫酸钠 | 0.25 | 0.09 | 0.92 | 27.61 | 3.36 | 247.88 | 0.33 | 280.44 |
硫酸钾 | 1.19 | 0.05 | 4.87 | 17.44 | 179.58 | 1050.98 | 0.66 | 1254.77 |
硫酸亚铁 | 0.34 | 1.87 | 23.59 | 12.43 | 2.85 | — | 42.07 | 83.15 |
硫酸铜 | 0.08 | 0.56 | 83.79 | 32.08 | 50.97 | 2200.51 | — | 2367.99 |
硫酸锰 | 0.08 | 0.85 | — | 42.93 | 6.46 | 315.70 | 0.88 | 366.90 |
溶液 | 评分 | |||||||
---|---|---|---|---|---|---|---|---|
放电时间 | 金属 总损失 | 总磷 泄漏量 | 溶液TOC | 溶液pH | 气体 危害等级 | 介质成本 | 总分 | |
纯水 | 68 | 63 | 35 | 18 | 80 | 70 | 100 | 66.5 |
自来水 | 84 | 49 | 10 | 10 | 80 | 80 | 100 | 64.6 |
碳酸钠 | 10 | 97 | 99 | 83 | 80 | 90 | 67 | 70.0 |
碳酸钾 | 10 | 96 | 98 | 64 | 80 | 90 | 13 | 57.0 |
碳酸氢钠 | 10 | 98 | 99 | 97 | 90 | 80 | 77 | 73.6 |
碳酸铵 | 10 | 96 | 99 | 87 | 90 | 80 | 51 | 67.0 |
氯化钠 | 100 | 50 | 61 | 46 | 100 | 90 | 94 | 78.5 |
氯化钾 | 100 | 46 | 20 | 10 | 100 | 90 | 49 | 61.0 |
氯化铁 | 100 | 80 | 10 | 10 | 50 | 80 | 60 | 63.0 |
氯化铜 | 100 | 10 | 19 | 69 | 70 | 70 | 10 | 46.8 |
氯化锰 | 100 | 26 | 48 | 14 | 80 | 70 | 25 | 51.4 |
硫酸钠 | 98 | 85 | 99 | 100 | 100 | 90 | 94 | 94.3 |
硫酸钾 | 99 | 37 | 100 | 100 | 100 | 90 | 50 | 76.2 |
硫酸亚铁 | 100 | 86 | 100 | 100 | 60 | 90 | 94 | 92.8 |
硫酸铜 | 100 | 10 | 35 | 100 | 70 | 70 | 10 | 51.5 |
硫酸锰 | 89 | 81 | 98 | 100 | 70 | 90 | 42 | 78.2 |
Table 7 Evaluation of discharge effect of different solutions
溶液 | 评分 | |||||||
---|---|---|---|---|---|---|---|---|
放电时间 | 金属 总损失 | 总磷 泄漏量 | 溶液TOC | 溶液pH | 气体 危害等级 | 介质成本 | 总分 | |
纯水 | 68 | 63 | 35 | 18 | 80 | 70 | 100 | 66.5 |
自来水 | 84 | 49 | 10 | 10 | 80 | 80 | 100 | 64.6 |
碳酸钠 | 10 | 97 | 99 | 83 | 80 | 90 | 67 | 70.0 |
碳酸钾 | 10 | 96 | 98 | 64 | 80 | 90 | 13 | 57.0 |
碳酸氢钠 | 10 | 98 | 99 | 97 | 90 | 80 | 77 | 73.6 |
碳酸铵 | 10 | 96 | 99 | 87 | 90 | 80 | 51 | 67.0 |
氯化钠 | 100 | 50 | 61 | 46 | 100 | 90 | 94 | 78.5 |
氯化钾 | 100 | 46 | 20 | 10 | 100 | 90 | 49 | 61.0 |
氯化铁 | 100 | 80 | 10 | 10 | 50 | 80 | 60 | 63.0 |
氯化铜 | 100 | 10 | 19 | 69 | 70 | 70 | 10 | 46.8 |
氯化锰 | 100 | 26 | 48 | 14 | 80 | 70 | 25 | 51.4 |
硫酸钠 | 98 | 85 | 99 | 100 | 100 | 90 | 94 | 94.3 |
硫酸钾 | 99 | 37 | 100 | 100 | 100 | 90 | 50 | 76.2 |
硫酸亚铁 | 100 | 86 | 100 | 100 | 60 | 90 | 94 | 92.8 |
硫酸铜 | 100 | 10 | 35 | 100 | 70 | 70 | 10 | 51.5 |
硫酸锰 | 89 | 81 | 98 | 100 | 70 | 90 | 42 | 78.2 |
1 | 孙睿, 刘丽丽, 刘艳开, 等. 锂离子电池中废旧磷酸铁锂的回收[J]. 电池, 2022, 52(5): 479-483. |
Sun R, Liu L L, Liu Y K, et al. Recycling spent LiFePO4 from Li-ion battery[J]. Battery Bimonthly, 2022, 52(5): 479-483. | |
2 | Nembhard N. Safe, sustainable discharge of electric vehicle batteries as a pre-treatment step to crushing in the recycling process[D]. Barcelona: Universitat Politècnica de Catalunya, 2020. |
3 | Fan E S, Li L, Wang Z P, et al. Sustainable recycling technology for Li-ion batteries and beyond: challenges and future prospects[J]. Chemical Reviews, 2020, 120(14): 7020-7063. |
4 | Yu D W, Huang Z, Makuza B, et al. Pretreatment options for the recycling of spent lithium-ion batteries: a comprehensive review[J]. Minerals Engineering, 2021, 173: 107218. |
5 | Bravo Diaz L, He X Z, Hu Z W, et al. Meta-review of fire safety of lithium-ion batteries: industry challenges and research contributions[J]. Journal of the Electrochemical Society, 2020, 167(9): 090559. |
6 | Jiang H, Emmett R K, Roberts M E. Thermally induced deactivation of lithium-ion batteries using temperature-responsive interfaces[J]. Ionics, 2019, 25(5): 2453-2457. |
7 | Gaines L, Richa K, Spangenberger J. Key issues for Li-ion battery recycling[J]. MRS Energy & Sustainability, 2018, 5(1): 1-14. |
8 | Nan J M, Han D M, Zuo X X. Recovery of metal values from spent lithium-ion batteries with chemical deposition and solvent extraction[J]. Journal of Power Sources, 2005, 152: 278-284. |
9 | 王洪彩. 含钴废旧锂离子电池回收技术及中试工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2013. |
Wang H C. Study on recycling of spent lithium ion batteries containing cobalt and pilot scale experiment[D]. Harbin: Harbin Institute of Technology, 2013. | |
10 | Yang A, Wang Y, Yang F F, et al. A comprehensive investigation of lithium-ion battery degradation performance at different discharge rates[J]. Journal of Power Sources, 2019, 443: 227108. |
11 | 潘帅, 纪常伟, 汪硕峰, 等. 废旧三元动力电池电热特性的实验研究[J]. 化工学报, 2020, 71(3): 1297-1309. |
Pan S, Ji C W, Wang S F, et al. Experimental study on electro-thermal characteristics of aged power batteries with ternary material[J]. CIESC Journal, 2020, 71(3): 1297-1309. | |
12 | Grandjean T R B, Groenewald J, Marco J. The experimental evaluation of lithium ion batteries after flash cryogenic freezing[J]. Journal of Energy Storage, 2019, 21: 202-215. |
13 | Georgi-Maschler T, Friedrich B, Weyhe R, et al. Development of a recycling process for Li-ion batteries[J]. Journal of Power Sources, 2012, 207: 173-182. |
14 | Paulino J F, Busnardo N G, Afonso J C. Recovery of valuable elements from spent Li-batteries[J]. Journal of Hazardous Materials, 2008, 150(3): 843-849. |
15 | Li J, Wang G X, Xu Z M. Generation and detection of metal ions and volatile organic compounds (VOCs) emissions from the pretreatment processes for recycling spent lithium-ion batteries[J]. Waste Management, 2016, 52: 221-227. |
16 | 靳岩, 娄忠良. 一种废旧锂电池快速放电方法及放电处理设备: 108808143A[P]. 2020-04-17. |
Jin Y, Lou Z L. Rapid discharge method for waste lithium battery and discharge treatment equipment: 108808143A[P]. 2020-04-17. | |
17 | 苏勇, 周宏喜, 卢世杰. 废旧动力电池资源化回收的放电试验线设计[J]. 中国资源综合利用, 2021, 39(9): 23-25. |
Su Y, Zhou H X, Lu S J. Design of discharge test line for recycling waste power batteries[J]. China Resources Comprehensive Utilization, 2021, 39(9): 23-25. | |
18 | Mossali E, Picone N, Gentilini L, et al. Lithium-ion batteries towards circular economy: a literature review of opportunities and issues of recycling treatments[J]. Journal of Environmental Management, 2020, 264: 110500. |
19 | Contestabile M, Panero S, Scrosati B. A laboratory-scale lithium battery recycling process1[J]. Journal of Power Sources, 1999, 83(1/2): 75-78. |
20 | 肖顺, 庄绪宁, 马恩. 报废锂电池高效便捷放电液对比研究[J]. 上海第二工业大学学报, 2022, 39(2): 112-117. |
Xiao S, Zhuang X N, Ma E. Comparative study on efficient and convenient discharging solution of scrap lithium-ion battery[J]. Journal of Shanghai Polytechnic University, 2022, 39(2): 112-117. | |
21 | Shaw-Stewart J, Alvarez-Reguera A, Greszta A, et al. Aqueous solution discharge of cylindrical lithium-ion cells[J]. Sustainable Materials and Technologies, 2019, 22: e00110. |
22 | Yao L P, Zeng Q, Qi T, et al. An environmentally friendly discharge technology to pretreat spent lithium-ion batteries[J]. Journal of Cleaner Production, 2020, 245: 118820. |
23 | 符元庆, 李强, 陈若葵, 等. 废旧锂离子电池放电实验研究[J]. 应用化工, 2020, 49(S2): 182-184. |
Fu Y Q, Li Q, Chen R K, et al. Experimental study on discharge of waste lithium ion batteries[J]. Applied Chemical Industry, 2020, 49(S2): 182-184. | |
24 | Fang Z, Duan Q L, Peng Q K, et al. Comparative study of chemical discharge strategy to pretreat spent lithium-ion batteries for safe, efficient, and environmentally friendly recycling[J]. Journal of Cleaner Production, 2022, 359: 132116. |
25 | Rouhi H, Karola E, Serna-Guerrero R, et al. Voltage behavior in lithium-ion batteries after electrochemical discharge and its implications on the safety of recycling processes[J]. Journal of Energy Storage, 2021, 35: 102323. |
26 | Ojanen S, Lundström M, Santasalo-Aarnio A, et al. Challenging the concept of electrochemical discharge using salt solutions for lithium-ion batteries recycling [J]. Waste Management, 2018, 76: 242-249. |
27 | 宋秀玲, 戴书琪, 徐永胜, 等. 废旧锂离子电池放电的实验研究[J]. 应用化工, 2015, 44(4): 594-597. |
Song X L, Dai S Q, Xu Y S, et al. Experimental study on the discharge of the waste lithium ion battery[J]. Applied Chemical Industry, 2015, 44(4): 594-597. | |
28 | Sun H H, Song Q M, Xu Z M. A method for using the residual energy in waste Li-ion batteries by regulating potential with the aid of overvoltage response[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(14): e2213130120. |
29 | Haynes W M. CRC Handbook of Chemistry and Physics[M]. Boca Raton: CRC Press, 2004. |
30 | 黄翰林, 刘春伟, 姚少杰, 等. 废锂离子电池的热处理: 过程污染物迁移和转化[J]. 过程工程学报, 2022, 22(3): 285-303. |
Huang H L, Liu C W, Yao S J, et al. Review of heat treatment process for spent lithium-ion batteries:from the perspective of pollutant migration and transformation[J]. The Chinese Journal of Process Engineering, 2022, 22(3): 285-303. | |
31 | 刘肖贝, 张西华, 熊梅, 等. 退役锂电池放电废水特征有机污染物解析[J]. 化工进展, 2022, 41(10): 5619-5629. |
Liu X B, Zhang X H, Xiong M, et al. Analysis on the characteristic organic pollutants from discharge wastewater of spent lithium batteries[J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5619-5629. | |
32 | Boucher B, Buhl R, Perrin M. Propriétés et structure magnétique de Mn3O4 [J]. Journal of Physics and Chemistry of Solids, 1971, 32(10): 2429-2437. |
33 | Bryantsev V S, Blanco M. Computational study of the mechanisms of superoxide-induced decomposition of organic carbonate-based electrolytes[J]. The Journal of Physical Chemistry Letters, 2011, 2(5): 379-383. |
34 | Lisbona D, Snee T. A review of hazards associated with primary lithium and lithium-ion batteries[J]. Process Safety and Environmental Protection, 2011, 89(6): 434-442. |
35 | 董缇, 彭鹏, 王亦伟, 等. 锂离子电池大电流放电过程模拟研究[J]. 化工学报, 2020, 71(8): 3710-3721. |
Dong T, Peng P, Wang Y W, et al. Simulation on lithium ion battery discharge process with large current[J]. CIESC Journal, 2020, 71(8): 3710-3721. | |
36 | 张媛. 酸性环境中镍基合金和不锈钢的电化学腐蚀行为及钝化膜特性研究[D]. 武汉:武汉科技大学, 2022. |
Zhang Y. The study of electrochemical corrosion behavior and passive film properties of nickel-based alloy and stainless steel in acidic environment[D]. Wuhan: Wuhan University of Science and Technology, 2022. | |
37 | Lv W G, Zheng X H, Li L, et al. Highly selective metal recovery from spent lithium-ion batteries through stoichiometric hydrogen ion replacement[J]. Frontiers of Chemical Science and Engineering, 2021, 15(5): 1243-1256. |
[1] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[2] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
[3] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[4] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[5] | Jing ZHAO, Chengwen GU, Xigao JIAN, Zhihuan WENG. Preparation and performance evaluation of magnolol-based epoxy resin anti-corrosion coatings [J]. CIESC Journal, 2023, 74(7): 3010-3017. |
[6] | Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC [J]. CIESC Journal, 2023, 74(7): 2999-3009. |
[7] | Yanhui LI, Shaoming DING, Zhouyang BAI, Yinan ZHANG, Zhihong YU, Limei XING, Pengfei GAO, Yongzhen WANG. Corrosion micro-nano scale kinetics model development and application in non-conventional supercritical boilers [J]. CIESC Journal, 2023, 74(6): 2436-2446. |
[8] | Nan HU, Demin TAO, Zhaolan YANG, Xuebing WANG, Xiangxu ZHANG, Yulong LIU, Dexin DING. Remediation of percolate water from uranium tailings reservoir by coupling iron-carbon micro-electrolysis and sulfate reducing bacteria [J]. CIESC Journal, 2023, 74(6): 2655-2667. |
[9] | Xiaodan SU, Ganyu ZHU, Huiquan LI, Guangming ZHENG, Ziheng MENG, Fang LI, Yunrui YANG, Benjun XI, Yu CUI. Optimization of wet process phosphoric acid hemihydrate process and crystallization of gypsum [J]. CIESC Journal, 2023, 74(4): 1805-1817. |
[10] | Sheng’an ZHANG, Guilian LIU. Multi-objective optimization of high-efficiency solar water electrolysis hydrogen production system and its performance [J]. CIESC Journal, 2023, 74(3): 1260-1274. |
[11] | Zhongqiu ZHANG, Hongguang LI, Yilin SHI. A multi-task learning approach for complex chemical processes based on manual predictive manipulating strategies [J]. CIESC Journal, 2023, 74(3): 1195-1204. |
[12] | Jianghuai ZHANG, Zhong ZHAO. Robust minimum covariance constrained control for C3 hydrogenation process and application [J]. CIESC Journal, 2023, 74(3): 1216-1227. |
[13] | Weiyi SU, Jiahui DING, Chunli LI, Honghai WANG, Yanjun JIANG. Research progress of enzymatic reactive crystallization [J]. CIESC Journal, 2023, 74(2): 617-629. |
[14] | Taoyan ZHAO, Jiangtao CAO, Ping LI, Lin FENG, Yu SHANG. Application of interval type-2 fuzzy immune PID controller to temperature control system for uncatalysed oxidation of cyclohexane [J]. CIESC Journal, 2022, 73(7): 3166-3173. |
[15] | Xiaolan WEI, Wenjie QI, Jing DING, Jianfeng LU, Weilong WANG, Shule LIU. Effect of valence state of chromium in molten chloride salt on corrosivity of nickel-based alloy [J]. CIESC Journal, 2022, 73(7): 3182-3192. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||