CIESC Journal ›› 2023, Vol. 74 ›› Issue (8): 3446-3456.DOI: 10.11949/0438-1157.20230555
• Surface and interface engineering • Previous Articles Next Articles
Jiaqi CHEN(), Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG(
)
Received:
2023-06-08
Revised:
2023-08-14
Online:
2023-10-18
Published:
2023-08-25
Contact:
Sheying DONG
通讯作者:
董社英
作者简介:
陈佳起(1999—),男,硕士研究生,chenjiaqi@xauat.edu.cn
基金资助:
CLC Number:
Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel[J]. CIESC Journal, 2023, 74(8): 3446-3456.
陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456.
C/ (mg·L-1) | Ecorr/ V | βa/(mV·dec-1) | βc/(mV·dec-1) | Icorr/ (A·cm-2) | η/% |
---|---|---|---|---|---|
0 | -0.464 | 9.762 | 8.752 | 6.80×10-4 | — |
10 | -0.471 | 14.801 | 8.893 | 2.27×10-4 | 66.6 |
50 | -0.472 | 14.345 | 9.037 | 8.54×10-5 | 87.4 |
100 | -0.470 | 16.093 | 9.385 | 6.02×10-5 | 91.1 |
200 | -0.471 | 14.489 | 7.522 | 6.09×10-5 | 91.0 |
300 | -0.463 | 13.289 | 7.391 | 5.57×10-5 | 91.8 |
Table 1 Polarization curve parameters at different pt-CDs concentrations
C/ (mg·L-1) | Ecorr/ V | βa/(mV·dec-1) | βc/(mV·dec-1) | Icorr/ (A·cm-2) | η/% |
---|---|---|---|---|---|
0 | -0.464 | 9.762 | 8.752 | 6.80×10-4 | — |
10 | -0.471 | 14.801 | 8.893 | 2.27×10-4 | 66.6 |
50 | -0.472 | 14.345 | 9.037 | 8.54×10-5 | 87.4 |
100 | -0.470 | 16.093 | 9.385 | 6.02×10-5 | 91.1 |
200 | -0.471 | 14.489 | 7.522 | 6.09×10-5 | 91.0 |
300 | -0.463 | 13.289 | 7.391 | 5.57×10-5 | 91.8 |
Time/h | Rs/ (Ω·cm2) | Rct/ (Ω·cm2) | Cdl/ (μF·cm-2) | n | η/% |
---|---|---|---|---|---|
0 | 4.9 | 346.4 | 112.84 | 0.81 | 90.2 |
2 | 2.0 | 375.4 | 82.03 | 0.86 | 90.9 |
6 | 1.2 | 622.6 | 68.19 | 0.89 | 94.5 |
12 | 2.4 | 381.3 | 79.97 | 0.85 | 91.1 |
24 | 4.1 | 197.2 | 101.87 | 0.84 | 82.7 |
Table 2 Impedance parameters at different immersion times
Time/h | Rs/ (Ω·cm2) | Rct/ (Ω·cm2) | Cdl/ (μF·cm-2) | n | η/% |
---|---|---|---|---|---|
0 | 4.9 | 346.4 | 112.84 | 0.81 | 90.2 |
2 | 2.0 | 375.4 | 82.03 | 0.86 | 90.9 |
6 | 1.2 | 622.6 | 68.19 | 0.89 | 94.5 |
12 | 2.4 | 381.3 | 79.97 | 0.85 | 91.1 |
24 | 4.1 | 197.2 | 101.87 | 0.84 | 82.7 |
C/(mg·L-1) | CR/(g·m-2·h-1) | η/% | ||||||
---|---|---|---|---|---|---|---|---|
303 K | 308 K | 313 K | 323 K | 303 K | 308 K | 313 K | 323 K | |
0 | 0.348 | 0.608 | 1.099 | 2.049 | — | — | — | — |
100 | 0.037 | 0.115 | 0.306 | 1.088 | 89.3 | 81.1 | 72.1 | 46.9 |
200 | 0.029 | 0.083 | 0.216 | 0.859 | 91.7 | 86.3 | 80.3 | 58.1 |
250 | 0.023 | 0.055 | 0.168 | 0.707 | 93.3 | 91.0 | 84.7 | 65.5 |
300 | 0.019 | 0.045 | 0.149 | 0.598 | 94.4 | 92.5 | 86.4 | 70.8 |
Table 3 Weightless method data
C/(mg·L-1) | CR/(g·m-2·h-1) | η/% | ||||||
---|---|---|---|---|---|---|---|---|
303 K | 308 K | 313 K | 323 K | 303 K | 308 K | 313 K | 323 K | |
0 | 0.348 | 0.608 | 1.099 | 2.049 | — | — | — | — |
100 | 0.037 | 0.115 | 0.306 | 1.088 | 89.3 | 81.1 | 72.1 | 46.9 |
200 | 0.029 | 0.083 | 0.216 | 0.859 | 91.7 | 86.3 | 80.3 | 58.1 |
250 | 0.023 | 0.055 | 0.168 | 0.707 | 93.3 | 91.0 | 84.7 | 65.5 |
300 | 0.019 | 0.045 | 0.149 | 0.598 | 94.4 | 92.5 | 86.4 | 70.8 |
1 | Wang B Y, Waterhouse G I N, Lu S Y. Carbon dots: mysterious past, vibrant present, and expansive future[J]. Trends in Chemistry, 2023, 5(1): 76-87. |
2 | He Z G, Sun Y D, Zhang C, et al. Recent advances of solvent-engineered carbon dots: a review[J]. Carbon, 2023, 204: 76-93. |
3 | Ryplida B, Lee G, In I, et al. Zwitterionic carbon dot-encapsulating pH-responsive mesoporous silica nanoparticles for NIR light-triggered photothermal therapy through pH-controllable release[J]. Biomaterials Science, 2019, 7(6): 2600-2610. |
4 | Shi B B, Pang X, Wu H, et al. Ultra-robust, highly proton-conductive polymer carbon dot membranes through bioinspired complexation[J]. Journal of Materials Chemistry A, 2022, 10(32): 16995-17000. |
5 | Xiao Q, Lu S Y, Huang C S, et al. Novel N-doped carbon dots/ β-cyclodextrin nanocomposites for enantioselective recognition of tryptophan enantiomers[J]. Sensors, 2016, 16(11): 1874. |
6 | Zhao M, Zhang J J, Xiao H, et al. Facile in situ synthesis of a carbon quantum dot/graphene heterostructure as an efficient metal-free electrocatalyst for overall water splitting[J]. Chemical Communications, 2019, 55(11): 1635-1638. |
7 | Song Y, Zhu C Z, Song J H, et al. Drug-derived bright and color-tunable N-doped carbon dots for cell imaging and sensitive detection of Fe3+ in living cells[J]. ACS Applied Materials & Interfaces, 2017, 9(8): 7399-7405. |
8 | Yuan T, Yuan F L, Sui L Z, et al. Carbon quantum dots with near-unity quantum yield bandgap emission for electroluminescent light-emitting diodes[J]. Angewandte Chemie International Edition, 2023, 62(20): e202218568. |
9 | Cui M J, Ren S M, Xue Q J, et al. Carbon dots as new eco-friendly and effective corrosion inhibitor[J]. Journal of Alloys and Compounds, 2017, 726: 680-692. |
10 | Wang J A, Du P, Zhao H C, et al. Novel nitrogen doped carbon dots enhancing the anticorrosive performance of waterborne epoxy coatings[J]. Nanoscale Advances, 2019, 1(9): 3443-3451. |
11 | Guo L, Zhu M Y, He Z Y, et al. One-pot hydrothermal synthesized nitrogen and sulfur codoped carbon dots for acid corrosion inhibition of Q235 steel[J]. Langmuir, 2022, 38(13): 3984-3992. |
12 | Arjeh E, Akhavan H R, Barzegar M, et al. Bio-active compounds and functional properties of pistachio hull: a review[J]. Trends in Food Science & Technology, 2020, 97: 55-64. |
13 | Chen C B, Dong Z L. Theoretically screening of carbon dots as corrosion inhibitor: effect of size and shape, functional group, and nitrogen doping[J]. Russian Journal of Physical Chemistry A, 2022, 96(11): 2451-2458. |
14 | 王绍壮, 于敦喜, 李佳忆, 等. 烟气烘焙对玉米秆可磨性的影响规律研究[J]. 化工学报, 2023, 74(2): 861-870. |
Wang S Z, Yu D X, Li J Y, et al. Effects of torrefaction with flue gas on grindability of corn stalk[J]. CIESC Journal, 2023, 74(2): 861-870. | |
15 | 叶茂林, 谭烽华, 李宇萍, 等. 农林废弃物气化合成混合醇生命周期环境影响分析[J]. 化工学报, 2022, 73(3): 1369-1378. |
Ye M L, Tan F H, Li Y P, et al. Life cycle environmental impact assessment of mixed alcohol via gasification of agricultural and forestry residues and catalytic synthesis[J]. CIESC Journal, 2022, 73(3): 1369-1378. | |
16 | Rivera-Armenta J L, Salazar-Cruz B A, Espindola-Flores A C, et al. Thermal and thermomechanical characterization of polypropylene-seed shell particles composites[J]. Applied Sciences, 2022, 12(16): 8336. |
17 | Akti F. Green synthesis of pistachio shell-derived biochar supported cobalt catalysts and their catalytic performance in sodium borohydride hydrolysis[J]. International Journal of Hydrogen Energy, 2022, 47(83): 35195-35202. |
18 | Göncü B, Gülşen H, Hoşgün E Z. Bioethanol production from pistachio (Pistacia vera L.) shells applying ozone pretreatment and subsequent enzymatic hydrolysis[J]. Environmental Technology, 2021, 42(15): 2438-2446. |
19 | Dolatabadi M, Naidu H, Ahmadzadeh S. A green approach to remove acetamiprid insecticide using pistachio shell-based modified activated carbon; economical groundwater treatment[J]. Journal of Cleaner Production, 2021, 316: 128226. |
20 | 胡若欣, 宋希元, 晋卫军. 碳点和掺杂碳点的发光机理[J]. 化学传感器, 2018, 38(1): 15-38. |
Hu R X, Song X Y, Jin W J. Luminescence origination of carbon dots and doped carbon dots[J]. Chemical Sensors, 2018, 38(1): 15-38. | |
21 | Li D Y, Wang S P, Azad F, et al. A simple method for the preparation of multi-color carbon quantum dots by using reversible regulatory color transformation[J]. Microchimica Acta, 2019, 186(9): 1-9. |
22 | Wang L, Li W T, Yin L Q, et al. Full-color fluorescent carbon quantum dots[J]. Science Advances, 2020, 6(40): eabb6772. |
23 | Li L S, Qin L, Fan X, et al. A novel and simple nitrogen-doped carbon/polyaniline electrode material for supercapacitors[J]. Frontiers of Materials Science, 2021, 15(1): 147-157. |
24 | Jing S S, Zhao Y S, Sun R C, et al. Facile and high-yield synthesis of carbon quantum dots from biomass-derived carbons at mild condition[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(8): 7833-7843. |
25 | Dang D K, Sundaram C, Ngo Y L T, et al. Pyromellitic acid-derived highly fluorescent N-doped carbon dots for the sensitive and selective determination of 4-nitrophenol[J]. Dyes and Pigments, 2019, 165: 327-334. |
26 | Geng B J, Hu J Y, Li Y, et al. Near-infrared phosphorescent carbon dots for sonodynamic precision tumor therapy[J]. Nature Communications, 2022, 13: 5735. |
27 | Milenkovic I, Algarra M, Alcoholado C, et al. Fingerprint imaging using N-doped carbon dots[J]. Carbon, 2019, 144: 791-797. |
28 | 郑天宇, 王璐, 刘金彦, 等. 离子液体在甲醇/硫酸介质中对Q235钢表面的缓蚀性能[J]. 化工学报, 2020, 71(5): 2230-2239. |
Zheng T Y, Wang L, Liu J Y, et al. Corrosion inhibition of ionic liquids on the surface of Q235 steel in methanol/sulfuric acid medium[J]. CIESC Journal, 2020, 71(5): 2230-2239. | |
29 | Qiang Y J, Zhang S T, Zhao H C, et al. Enhanced anticorrosion performance of copper by novel N-doped carbon dots[J]. Corrosion Science, 2019, 161: 108193. |
30 | 罗雪, 黄海军, 罗自萍, 等. 无患子果皮提取物的纳微米聚集体对钢的高效缓蚀[J]. 化工学报, 2020, 71(10): 4760-4772. |
Luo X, Huang H J, Luo Z P, et al. High efficient corrosion inhibition of steel by nano-micro aggregates of Sapindus mukorossi Gaertn peel extracts[J]. CIESC Journal, 2020, 71(10): 4760-4772. | |
31 | 董秋辰, 张光华, 张万斌, 等. 甲基丙烯酸二甲氨基乙酯类离子液体对Q235钢的缓蚀性能[J]. 高等学校化学学报, 2019, 40(12): 2556-2565. |
Dong Q C, Zhang G H, Zhang W B, et al. Corrosion inhibition of Q235 steel by ionic liquid based on the 2-(dimethylamino)ethyl methacrylate[J]. Chemical Journal of Chinese Universities, 2019, 40(12): 2556-2565. | |
32 | Fares M M, Maayta A K, AI-Mustafa J A. Synergistic corrosion inhibition of aluminum by polyethylene glycol and ciprofloxacin in acidic media[J]. Journal of Adhesion Science and Technology, 2013, 27(23): 2495-2506. |
33 | Chen Y Q, Sun X B, Pan W, et al. Fe3+-sensitive carbon dots for detection of Fe3+ in aqueous solution and intracellular imaging of Fe3+ inside fungal cells[J]. Frontiers in Chemistry, 2020, 7: 911. |
34 | Zhang S P, Jiang X, Cheng S K, et al. Enhanced scale inhibition against Ca3(PO4)2 and Fe2O3 in water using multi-functional fluorescently-tagged antibacterial scale inhibitors[J]. Environmental Science: Water Research & Technology, 2020, 6(4): 951-962. |
35 | Bejinariu C, Burduhos-Nergis D P, Cimpoesu N. Immersion behavior of carbon steel, phosphate carbon steel and phosphate and painted carbon steel in saltwater[J]. Materials, 2021, 14(1): 188. |
[1] | Fei KANG, Weiguang LYU, Feng JU, Zhi SUN. Research on discharge path and evaluation of spent lithium-ion batteries [J]. CIESC Journal, 2023, 74(9): 3903-3911. |
[2] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[3] | Jiali ZHENG, Zhihui LI, Xinqiang ZHAO, Yanji WANG. Kinetics of ionic liquid catalyzed synthesis of 2-cyanofuran [J]. CIESC Journal, 2023, 74(9): 3708-3715. |
[4] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[5] | Meibo XING, Zhongtian ZHANG, Dongliang JING, Hongfa ZHANG. Enhanced phase change energy storage/release properties by combining porous materials and water-based carbon nanotube under magnetic regulation [J]. CIESC Journal, 2023, 74(7): 3093-3102. |
[6] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[7] | Jing ZHAO, Chengwen GU, Xigao JIAN, Zhihuan WENG. Preparation and performance evaluation of magnolol-based epoxy resin anti-corrosion coatings [J]. CIESC Journal, 2023, 74(7): 3010-3017. |
[8] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
[9] | Yanhui LI, Shaoming DING, Zhouyang BAI, Yinan ZHANG, Zhihong YU, Limei XING, Pengfei GAO, Yongzhen WANG. Corrosion micro-nano scale kinetics model development and application in non-conventional supercritical boilers [J]. CIESC Journal, 2023, 74(6): 2436-2446. |
[10] | Maolin DONG, Lidong CHEN, Liulian HUANG, Weibing WU, Hongqi DAI, Huiyang BIAN. Research progress in preparation of lignonanocellulose by acid hydrotropes and their functional applications [J]. CIESC Journal, 2023, 74(6): 2281-2295. |
[11] | Qin YANG, Chuanjian QIN, Mingzi LI, Wenjing YANG, Weijie ZHAO, Hu LIU. Fabrication and properties of dual shape memory MXene based hydrogels for flexible sensor [J]. CIESC Journal, 2023, 74(6): 2699-2707. |
[12] | Yuanchao LIU, Xuhao JIANG, Ke SHAO, Yifan XU, Jianbin ZHONG, Zhuan LI. Influence of geometrical dimensions and defects on the thermal transport properties of graphyne nanoribbons [J]. CIESC Journal, 2023, 74(6): 2708-2716. |
[13] | Zefeng GE, Yuqing WU, Mingxun ZENG, Zhenting ZHA, Yuna MA, Zenghui HOU, Huiyan ZHANG. Effect of ash chemical components on biomass gasification properties [J]. CIESC Journal, 2023, 74(5): 2136-2146. |
[14] | Haiqin LIU, Bowen LI, Zhe LING, Liang LIU, Juan YU, Yimin FAN, Qiang YONG. Facile preparation and properties of chemically modified galactomannan films via mild hydroxy-alkyne click reaction [J]. CIESC Journal, 2023, 74(3): 1370-1378. |
[15] | Lingxin ZU, Rongting HU, Xin LI, Yudao CHEN, Guanglin CHEN. Carbon release products and denitrification bioavailability from chemical components of woody biomass [J]. CIESC Journal, 2023, 74(3): 1332-1342. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||