1 |
Camargo J, Osinaga S, Febbo M, et al. Piezoelectric and structural properties of bismuth sodium potassium titanate lead-free ceramics for energy harvesting[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(14): 19117-19125.
|
2 |
Smirnov A, Chugunov S, Kholodkova A, et al. Progress and challenges of 3D-printing technologies in the manufacturing of piezoceramics[J]. Ceramics International, 2021, 47(8): 10478-10511.
|
3 |
Dagdeviren C, Joe P, Tuzman O L, et al. Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation[J]. Extreme Mechanics Letters, 2016, 9: 269-281.
|
4 |
Kimura T. Application of texture engineering to piezoelectric ceramics—a review[J]. Journal of the Ceramic Society of Japan, 2006, 114(1325): 15-25.
|
5 |
Lv X, Wu J G, Yang S, et al. Identification of phase boundaries and electrical properties in ternary potassium-sodium niobate-based ceramics[J]. ACS Applied Materials & Interfaces, 2016, 8(29): 18943-18953.
|
6 |
Wang L, Liang R H, Mao C L, et al. Effect of PMN content on the phase structure and electrical properties of PMN-PZT ceramics[J]. Ceramics International, 2013, 39(7): 8571-8574.
|
7 |
Yoo J, Lee C, Jeong Y, et al. Microstructural and piezoelectric properties of low temperature sintering PMN-PZT ceramics with the amount of Li2CO3 addition[J]. Materials Chemistry and Physic, 2005, 90(2/3): 386-390.
|
8 |
Lin D B, Li Z R, Li F, et al. Characterization and piezoelectric thermal stability of PIN-PMN-PT ternary ceramics near the morphotropic phase boundary[J]. Journal of Alloys and Compounds, 2010, 489(1): 115-118.
|
9 |
Tang H, Zhang M F, Zhang S J, et al. Investigation of dielectric and piezoelectric properties in Pb(Ni1/3Nb2/3)O3-PbHfO3-PbTiO3 ternary system[J]. Journal of the European Ceramic Society, 2013, 33(13/14): 2491-2497.
|
10 |
Wang L, Liang R H, Mao C L, et al. Investigation of phase structure and electrical properties of doped PMN-PZT ceramics prepared by different methods[J]. Journal of the American Ceramic Society, 2012, 95(2): 445-448.
|
11 |
Chang Y F, Wu J, Liu Z, et al. Grain-oriented ferroelectric ceramics with single-crystal-like piezoelectric properties and low texture temperature[J]. ACS Applied Materials & Interfaces, 2020, 12(34): 38415-38424.
|
12 |
Bian L, Kou Q W, Liu L J, et al. Enhancing the temperature stability of 0.42PNN-0.21PZ-0.37PT ceramics through texture engineering[J]. ACS Applied Materials & Interfaces, 2022, 14(2): 3076-3083.
|
13 |
Luff D, Lane R, Brown K R, et al. Ferroelectric ceramics with high pyroelectric properties[J]. J. Br. Ceram. Soc., 1974(73): 251-264.
|
14 |
Wu H, Zheng D Y. Preparation of PNN-PZT ceramics and piezoelectric characteristics[J]. Applied Mechanics and Materials, 2014, 700: 132-135.
|
15 |
Mahajan S, Thakur O P, Prakash C. Effect of sintering temperature on structural and piezoelectric properties of PNN-PZT ceramics[J]. Defence Science Journal, 2007, 57(1): 23-28.
|
16 |
Zhang J, Zhang Y S, Yan Z M, et al. Fabrication and performance of PNN-PZT piezoelectric ceramics obtained by low-temperature sintering[J]. Science and Engineering of Composite Materials, 2020, 27(1): 359-365.
|
17 |
Wang H L, Zhang F F, Chen Y, et al. Giant piezoelectric coefficient of PNN-PZT-based relaxor piezoelectric ceramics by constructing an R-T MPB[J]. Ceramics International, 2021, 47(9): 12284-12291.
|
18 |
Koide S, Kakimoto K. Crystallographic orientation of (Li, Na, K)NbO3 lead-free piezoelectric crystal[J]. Key Engineering Materials, 2013, 566: 68-71.
|
19 |
Sun R B, Li X B, Zhang Q H, et al. Growth and electrical properties of 0.95Na0.5Bi0.5TiO3-0.05K0.5Bi0.5TiO3 lead-free piezoelectric crystal by the TSSG method[J]. Journal of Crystal Growth, 2012, 341(1): 34-37.
|
20 |
Lu Y, Karaki T, Fujii T, et al. Morphology control and phase transition of hexagonal sodium niobate particles[J]. Ceramics International, 2017, 43(12): 9124-9127.
|
21 |
DeAngelis D A, Schulze G W. Performance of PIN-PMN-PT single crystal piezoelectric versus PZT8 piezoceramic materials in ultrasonic transducers[J]. Physics Procedia, 2015, 63: 21-27.
|
22 |
Poterala S F, Meyer R J, Messing G L. Fabrication and properties of radially 〈001〉C textured PMN-PT cylinders for transducer applications[J]. Journal of Applied Physics, 2012, 112(1): 014105.
|
23 |
Whittle T A, Howard C J, Schmid S. Structures and phase transitions in barium sodium niobate tungsten bronze (BNN)[J]. Acta Crystallographica Section B, 2021, 77(6): 981-985.
|
24 |
Su S, Zuo R Z, Lv D Y. Densification and texture evolution of Bi4Ti3O12 templated Na0.5Bi0.5TiO3-BaTiO3 ceramics: effects of excess Bi2O3 [J]. Journal of Alloys and Compounds, 2012, 519: 25-28.
|
25 |
Gao F, Hong R Z, Liu J J, et al. Effect of different templates on microstructure of textured Na0.5Bi0.5TiO3-BaTiO3 ceramics with RTGG method[J]. Journal of the European Ceramic Society, 2008, 28(10): 2063-2070.
|
26 |
Zhou S X, Liu D, Zhou H P, et al. Fabrication of spark plasma sintering on Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics layers prepared by tape casting and TGG method[J]. Key Engineering Materials, 2008, 368-372: 27-29.
|
27 |
Yun J S, Park T W, Jeong Y H, et al. Development of ceramic-reinforced photopolymers for SLA 3D printing technology[J]. Applied Physics A, 2016, 122(6): 1-6.
|
28 |
Liu X Y, Zou B, Xing H Y, et al. The preparation of ZrO2-Al2O3 composite ceramic by SLA-3D printing and sintering processing[J]. Ceramics International, 2020, 46(1): 937-944.
|
29 |
Hwa L C, Rajoo S, Noor A M, et al. Recent advances in 3D printing of porous ceramics: a review[J]. Current Opinion in Solid State and Materials Science, 2017, 21(6): 323-347.
|
30 |
Selvakumar R D, Dhinakaran S. Effective viscosity of nanofluids—a modified Krieger-Dougherty model based on particle size distribution (PSD) analysis[J]. Journal of Molecular Liquids, 2017, 225: 20-27.
|
31 |
Griffith M L, Halloran J W. Freeform fabrication of ceramics via stereolithography[J]. Journal of the American Ceramic Society, 1996, 79(10): 2601-2608.
|
32 |
Abouliatim Y, Chartier T, Abelard P, et al. Optical characterization of stereolithography alumina suspensions using the Kubelka-Munk model[J]. Journal of the European Ceramic Society, 2009, 29(5): 919-924.
|
33 |
Yan Y K, Zhou J E, Maurya D, et al. Giant piezoelectric voltage coefficient in grain-oriented modified PbTiO3 material[J]. Nature Communications, 2016, 7: 13089.
|
34 |
Bian L, Qi X D, Li K, et al. High-performance [001]C-textured PNN-PZT relaxor ferroelectric ceramics for electromechanical coupling devices[J]. Advanced Functional Materials, 2020, 30(25): 2001846.
|
35 |
Yan Y K, Cho K H, Maurya D, et al. Giant energy density in [001]-textured Pb(Mg1/3Nb2/3)O3-PbZrO3-PbTiO3 piezoelectric ceramics[J]. Applied Physics Letters, 2013, 102(4): 042903.
|
36 |
Yan Y K, Wang Y U, Priya S. Electromechanical behavior of [001]-textured Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics[J]. Applied Physics Letters, 2012, 100(19): 192905.
|
37 |
Chang Y F, Watson B, Fanton M, et al. Enhanced texture evolution and piezoelectric properties in CuO-doped Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 grain-oriented ceramics[J]. Applied Physics Letters, 2017, 111(23): 232901.
|
38 |
Wei D D, Yuan Q B, Zhang G Q, et al. Templated grain growth and piezoelectric properties of 〈001〉-textured PIN-PMN-PT ceramics[J]. Journal of Materials Research, 2015, 30(14): 2144-2150.
|