CIESC Journal ›› 2022, Vol. 73 ›› Issue (9): 3963-3972.DOI: 10.11949/0438-1157.20220417
• Process system engineering • Previous Articles Next Articles
Minghui YANG(), Xiaoyue LIU, Xiaogang DENG(), Mingyan LIAO, Chunwang HOU
Received:
2022-03-24
Revised:
2022-05-30
Online:
2022-10-09
Published:
2022-09-05
Contact:
Xiaogang DENG
通讯作者:
邓晓刚
作者简介:
杨明辉(1978—),男,硕士,讲师,yangmhui@upc.edu.cn
基金资助:
CLC Number:
Minghui YANG, Xiaoyue LIU, Xiaogang DENG, Mingyan LIAO, Chunwang HOU. Incipient fault detection for dynamic chemical processes based on weighted probability CVDA[J]. CIESC Journal, 2022, 73(9): 3963-3972.
杨明辉, 刘晓月, 邓晓刚, 廖明燕, 侯春望. 基于加权概率CVDA的动态化工系统微小故障检测[J]. 化工学报, 2022, 73(9): 3963-3972.
故障模式 | 故障描述 |
---|---|
F1 | IDV4: 反应器冷却水入口温度阶跃变化 |
F2 | IDV10: 进料温度随机变化 |
F3 | IDV11:反应器冷却水入口温度随机波动 |
F4 | IDV15: 反应器冷却水阀门黏滞 |
F5, F6 | IDV19-20: 未知类型 |
F7 | IDV21: 流4的阀门粘住 |
Table 1 The testing fault of TE process
故障模式 | 故障描述 |
---|---|
F1 | IDV4: 反应器冷却水入口温度阶跃变化 |
F2 | IDV10: 进料温度随机变化 |
F3 | IDV11:反应器冷却水入口温度随机波动 |
F4 | IDV15: 反应器冷却水阀门黏滞 |
F5, F6 | IDV19-20: 未知类型 |
F7 | IDV21: 流4的阀门粘住 |
Fault | CVDA | CVRA | PCVDA | WPCVDA | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
F1 | 81.38 | 100 | 99.50 | 99.25 | 99.50 | 97.50 | 99.88 | 98.50 | 98.13 | 99.88 | 99.00 |
F2 | 89.13 | 84.75 | 92.25 | 95.63 | 91.00 | 94.63 | 97.75 | 96.88 | 95.38 | 97.75 | 96.88 |
F3 | 59.63 | 75.50 | 79.13 | 89.00 | 91.63 | 51.25 | 99.25 | 93.00 | 76.25 | 99.25 | 96.13 |
F4 | 6.38 | 3.88 | 20.00 | 35.13 | 7.50 | 17.25 | 59.88 | 29.88 | 17.75 | 77.38 | 43.25 |
F5 | 71.75 | 93.00 | 93.50 | 99.00 | 98.88 | 56.63 | 99.63 | 99.50 | 97.88 | 99.75 | 100 |
F6 | 88.13 | 78.38 | 91.25 | 90.88 | 89.88 | 90.00 | 91.88 | 90.25 | 90.25 | 91.88 | 90.63 |
F7 | 46.88 | 38.38 | 74.75 | 77.25 | 45.13 | 63.13 | 79.00 | 80.63 | 64.50 | 82.00 | 80.75 |
mean | 63.32 | 67.70 | 78.63 | 83.73 | 74.79 | 67.20 | 89.61 | 84.09 | 77.16 | 92.55 | 86.66 |
Table 2 Comparison of FDRs on four methods/%
Fault | CVDA | CVRA | PCVDA | WPCVDA | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
F1 | 81.38 | 100 | 99.50 | 99.25 | 99.50 | 97.50 | 99.88 | 98.50 | 98.13 | 99.88 | 99.00 |
F2 | 89.13 | 84.75 | 92.25 | 95.63 | 91.00 | 94.63 | 97.75 | 96.88 | 95.38 | 97.75 | 96.88 |
F3 | 59.63 | 75.50 | 79.13 | 89.00 | 91.63 | 51.25 | 99.25 | 93.00 | 76.25 | 99.25 | 96.13 |
F4 | 6.38 | 3.88 | 20.00 | 35.13 | 7.50 | 17.25 | 59.88 | 29.88 | 17.75 | 77.38 | 43.25 |
F5 | 71.75 | 93.00 | 93.50 | 99.00 | 98.88 | 56.63 | 99.63 | 99.50 | 97.88 | 99.75 | 100 |
F6 | 88.13 | 78.38 | 91.25 | 90.88 | 89.88 | 90.00 | 91.88 | 90.25 | 90.25 | 91.88 | 90.63 |
F7 | 46.88 | 38.38 | 74.75 | 77.25 | 45.13 | 63.13 | 79.00 | 80.63 | 64.50 | 82.00 | 80.75 |
mean | 63.32 | 67.70 | 78.63 | 83.73 | 74.79 | 67.20 | 89.61 | 84.09 | 77.16 | 92.55 | 86.66 |
FAR | CVDA | CVRA | PCVDA | WPCVDA | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
mean | 0.71 | 0.63 | 0.36 | 0.27 | 0.36 | 0 | 0.27 | 0 | 0 | 0.45 | 0.09 |
Table 3 Comparison of average FARs on four methods /%
FAR | CVDA | CVRA | PCVDA | WPCVDA | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
mean | 0.71 | 0.63 | 0.36 | 0.27 | 0.36 | 0 | 0.27 | 0 | 0 | 0.45 | 0.09 |
1 | Zhang X C, Jiang D X, Han T, et al. Rotating machinery fault diagnosis for imbalanced data based on fast clustering algorithm and support vector machine[J]. Journal of Sensors, 2017, 2017: 8092691. |
2 | 商亮亮, 陆智林, 文传博, 等. 基于规范变量残差的化工过程微小故障检测与诊断[J]. 控制理论与应用, 2021, 38(8): 1247-1256. |
Shang L L, Lu Z L, Wen C B, et al. Canonical residual based incipient fault detection and diagnosis for chemical process[J]. Control Theory & Applications, 2021, 38(8): 1247-1256. | |
3 | Chen H T, Jiang B, Zhang T Y, et al. Data-driven and deep learning-based detection and diagnosis of incipient faults with application to electrical traction systems[J]. Neurocomputing, 2020, 396: 429-437. |
4 | Taqvi S A A, Zabiri H, Tufa L D, et al. A review on data-driven learning approaches for fault detection and diagnosis in chemical processes[J]. ChemBioEng Reviews, 2021, 8(3): 239-259. |
5 | Zhu J L, Ge Z Q, Song Z H, et al. Review and big data perspectives on robust data mining approaches for industrial process modeling with outliers and missing data[J]. Annual Reviews in Control, 2018, 46: 107-133. |
6 | 徐静, 王振雷, 王昕. 基于非线性动态全局局部保留投影算法的化工过程故障检测[J]. 化工学报, 2020, 71(12): 5655-5663. |
Xu J, Wang Z L, Wang X. Fault detection for chemical process based on nonlinear dynamic global-local preserving projections[J]. CIESC Journal, 2020, 71(12): 5655-5663. | |
7 | Liu J H, Qu F M, Hong X W, et al. A small-sample wind turbine fault detection method with synthetic fault data using generative adversarial nets[J]. IEEE Transactions on Industrial Informatics, 2019, 15(7): 3877-3888. |
8 | 胡云鹏, 陈焕新, 周诚, 等. 基于主元分析法的冷水机组传感器故障检测效率分析[J]. 化工学报, 2012, 63: 85-88. |
Hu Y P, Chen H X, Zhou C, et al. Analysis of sensor fault detection in chiller based on PCA method[J]. CIESC Journal, 2012, 63: 85-88. | |
9 | Kano M, Hasebe S, Hashimoto I, et al. A new multivariate statistical process monitoring method using principal component analysis[J]. Computers & Chemical Engineering, 2001, 25(7/8): 1103-1113. |
10 | Chen Z W, Yang C H, Peng T, et al. A cumulative canonical correlation analysis-based sensor precision degradation detection method[J]. IEEE Transactions on Industrial Electronics, 2019, 66(8): 6321-6330. |
11 | Liu Y Q, Liu B, Zhao X J, et al. A mixture of variational canonical correlation analysis for nonlinear and quality-relevant process monitoring[J]. IEEE Transactions on Industrial Electronics, 2018, 65(8): 6478-6486. |
12 | Tong C D, Lan T, Yu H Z, et al. Distributed partial least squares based residual generation for statistical process monitoring[J]. Journal of Process Control, 2019, 75: 77-85. |
13 | Jia Q L, Zhang Y W. Quality-related fault detection approach based on dynamic kernel partial least squares[J]. Chemical Engineering Research and Design, 2016, 106: 242-252. |
14 | 姚林, 张岩. 基于自适应混合核典型变量分析的工业过程质量相关故障检测[J]. 控制与决策, 2021, 36(4): 801-807. |
Yao L, Zhang Y. Quality-related fault detection for industrial processes based on adaptive mixed kernel canonical variable analysis[J]. Control and Decision, 2021, 36(4): 801-807. | |
15 | Cao Y P, Yu L, Deng X G, et al. Variable sub-region canonical variate analysis for dynamic process monitoring[J]. IEEE Access, 2020, 8: 37775-37789. |
16 | Pilario K E S, Cao Y. Canonical variate dissimilarity analysis for process incipient fault detection[J]. IEEE Transactions on Industrial Informatics, 2018, 14(12): 5308-5315. |
17 | Pilario K E S, Cao Y, Shafiee M. Incipient fault detection, diagnosis, and prognosis using canonical variate dissimilarity analysis[J].Computer Aided Chemical Engineering, 2019: 1195-1200. |
18 | Pilario K E S, Cao Y, Shafiee M. Mixed kernel canonical variate dissimilarity analysis for incipient fault monitoring in nonlinear dynamic processes[J]. Computers & Chemical Engineering, 2019, 123: 143-154. |
19 | Yu W K, Zhao C H. Low-rank characteristic and temporal correlation analytics for incipient industrial fault detection with missing data[J]. IEEE Transactions on Industrial Informatics, 2021, 17(9): 6337-6346. |
20 | 王宝祥, 潘宏侠. 基于分时段规范变量残差分析的高速自动机动态特性监测[J]. 振动与冲击, 2019, 38(20): 90-96. |
Wang B X, Pan H X. Dynamic performance monitoring of high-speed automata based on phase-partitioned canonical variate dissimilarity analysis[J]. Journal of Vibration and Shock, 2019, 38(20): 90-96. | |
21 | Wu P, Ferrari R M G, Liu Y C, et al. Data-driven incipient fault detection via canonical variate dissimilarity and mixed kernel principal component analysis[J]. IEEE Transactions on Industrial Informatics, 2021, 17(8): 5380-5390. |
22 | Tang Q, Liu Y, Chai Y, et al. Dynamic process monitoring based on canonical global and local preserving projection analysis[J]. Journal of Process Control, 2021, 106: 221-232. |
23 | 邓晓刚, 田学民. 基于鲁棒规范变量分析的故障诊断方法[J]. 控制与决策, 2008, 23(4): 415-419. |
Deng X G, Tian X M. Fault diagnosis method based on robust canonical variate analysis[J]. Control and Decision, 2008, 23(4): 415-419. | |
24 | Han X J, Jiang J, Xu A D, et al. Fault detection of pneumatic control valves based on canonical variate analysis[J]. IEEE Sensors Journal, 2021, 21(12): 13603-13615. |
25 | Juricek B C, Seborg D E, Larimore W E. Fault detection using canonical variate analysis[J]. Industrial & Engineering Chemistry Research, 2004, 43(2): 458-474. |
26 | Odiowei P P, Cao Y. Nonlinear dynamic process monitoring using canonical variate analysis and kernel density estimations[J]. Computer Aided Chemical Engineering, 2009, 27: 1557-1562. |
27 | Zhang Z, Deng X G. Anomaly detection using improved deep SVDD model with data structure preservation[J]. Pattern Recognition Letters, 2021, 148: 1-6. |
28 | 王晓慧, 王延江, 邓晓刚, 等. 基于加权深度支持向量数据描述的工业过程故障检测[J]. 化工学报, 2021, 72(11): 5707-5716. |
Wang X H, Wang Y J, Deng X G, et al. Industrial process fault detection using weighted deep support vector data description[J]. CIESC Journal, 2021, 72(11): 5707-5716. | |
29 | Ni K Y, Bresson X, Chan T, et al. Local histogram based segmentation using the Wasserstein distance[J]. International Journal of Computer Vision, 2009, 84(1): 97-111. |
30 | Yang Q S, Yan P K, Zhang Y B, et al. Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss[J]. IEEE Transactions on Medical Imaging, 2018, 37(6): 1348-1357. |
31 | Oh J H, Pouryahya M, Iyer A, et al. A novel kernel Wasserstein distance on Gaussian measures: an application of identifying dental artifacts in head and neck computed tomography[J]. Computers in Biology and Medicine, 2020, 120: 103731. |
32 | Deng X G, Deng J W. Incipient fault detection for chemical processes using two-dimensional weighted SLKPCA[J]. Industrial & Engineering Chemistry Research, 2019, 58(6): 2280-2295. |
[1] | Huafu ZHANG, Lige TONG, Zhentao ZHANG, Junling YANG, Li WANG, Junhao ZHANG. Recent progress and development trend of mechanical vapor compression evaporation technology [J]. CIESC Journal, 2023, 74(S1): 8-24. |
[2] | ZHANG Guolei, QUE Chenyu, TAN Xiu, LI Jian, SONG Fuyuan, JIANG Zhengyue. Simulation of initiative counter steam control during process of rapid deceleration in ship [J]. CIESC Journal, 2018, 69(S2): 358-364. |
[3] | DONG Yuxi, LI Lening, TIAN Wende. A novel fault diagnosis method based on multilayer optimized PCC-SDG [J]. CIESC Journal, 2018, 69(3): 1173-1181. |
[4] | YU Yang, LIU Peiqi, WANG Yunlei, LENG Chuang, ZHAO Yiming, WANG Jingxian, HU Dapeng. Flow and thermodynamic properties of efficient gas wave refrigeration plant [J]. CIESC Journal, 2017, 68(8): 3039-3048. |
[5] | YANG Rui, WANG Yi, FENG Ye, JIN Tao. Performance analysis on a looped thermoacoustic refrigeration system driven by thermoacoustic engine [J]. CIESC Journal, 2016, 67(S2): 298-303. |
[6] | SUN Baozhi, GUO Jiamin, SHI Zhijun, YANG Longbin, SONG Fuyuan. Charging characteristics of marine steam accumulator under different operating conditions [J]. CIESC Journal, 2015, 66(S2): 172-179. |
[7] | ZHANG Hongguang, WANG Hongjin, YANG Kai, YANG Fubin, SONG Songsong, CHANG Ying, BEI Chen, MENG Fanxiao. Parametric optimization of organic Rankine cycle for vehicle diesel enginebased on particle swarm optimization [J]. CIESC Journal, 2015, 66(12): 5031-5039. |
[8] | XU Shimin, LANG Zhongmin, WANG Yaxiong, HE Wenxiu, LIANG Qianqing. Nucleate boiling heat transfer of hydroxylated carbon nano-tubes/R141b nanofluids on smooth plate [J]. CIESC Journal, 2015, 66(11): 4424-4430. |
[9] | CHEN Hongjie, LU Wei, ZHUANG Guangliang. Method for design and optimization of cylindrical mixing chamber ejector based on real gas properties [J]. CIESC Journal, 2015, 66(10): 3881-3887. |
[10] | SHEN Shengqiang, ZHOU Shihe, MU Xingsen, GUO Yali. Analysis of thermodynamic losses of heat transfer process in large-scale LT-MED desalination plant [J]. CIESC Journal, 2014, 65(9): 3366-3374. |
[11] | WU Jiying, MA Yimin. Partial load performance of biogas engine driven air source heat pump system [J]. CIESC Journal, 2014, 65(11): 4551-4556. |
[12] | LIANG Chao, WANG Hong, ZHU Xun, CHEN Rong, DING Yudong, LIAO Qiang. Numerical simulation of droplet impact on surfaces with different wettabilities [J]. CIESC Journal, 2013, 64(8): 2745-2751. |
[13] | XIELei, ZHANG Jianming, WANG Shuqing. Investigation of Dynamic Multivariate Chemical Process Monitoring [J]. , 2006, 14(5): 559-568. |
[14] | Song Haihua, Yu Guocong. START UP AND DYNAMIC PROCESSES SIMULATION OF A DISTILLATION COLUMN [J]. , 1995, 3(3): 134-144. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 134
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 294
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||