CIESC Journal ›› 2022, Vol. 73 ›› Issue (9): 3950-3962.DOI: 10.11949/0438-1157.20220568
• Process system engineering • Previous Articles Next Articles
Xuejin GAO1,2,3,4(), Kun CHENG1,2,3,4, Huayun HAN1,2,3,4, Huihui Gao1,2,3,4, Yongsheng QI5
Received:
2022-04-21
Revised:
2022-06-02
Online:
2022-10-09
Published:
2022-09-05
Contact:
Xuejin GAO
高学金1,2,3,4(), 程琨1,2,3,4, 韩华云1,2,3,4, 高慧慧1,2,3,4, 齐咏生5
通讯作者:
高学金
作者简介:
高学金(1973—),男,博士,教授,gaoxuejin@bjut.edu.cn
基金资助:
CLC Number:
Xuejin GAO, Kun CHENG, Huayun HAN, Huihui Gao, Yongsheng QI. Fault diagnosis of chillers using central loss conditional generative adversarial network[J]. CIESC Journal, 2022, 73(9): 3950-3962.
高学金, 程琨, 韩华云, 高慧慧, 齐咏生. 基于中心损失的条件生成式对抗网络的冷水机组故障诊断[J]. 化工学报, 2022, 73(9): 3950-3962.
Add to citation manager EndNote|Ris|BibTeX
组成部分 | 结构 | 节点数 | 激活函数 |
---|---|---|---|
生成器 | 输入层 | 129 | ReLU |
隐藏层1 | 257 | ReLU | |
隐藏层2 | 129 | ReLU | |
输出层 | 64 | ReLU | |
判别器 | 输入层 | 65 | ReLU |
隐藏层1 | 256 | ReLU | |
隐藏层2 | 64 | ReLU | |
隐藏层3 | 32 | ReLU | |
输出层1 | 7 | ReLU | |
输出层2 | 1 | Sigmoid |
Table 1 Structure of CLCGAN model
组成部分 | 结构 | 节点数 | 激活函数 |
---|---|---|---|
生成器 | 输入层 | 129 | ReLU |
隐藏层1 | 257 | ReLU | |
隐藏层2 | 129 | ReLU | |
输出层 | 64 | ReLU | |
判别器 | 输入层 | 65 | ReLU |
隐藏层1 | 256 | ReLU | |
隐藏层2 | 64 | ReLU | |
隐藏层3 | 32 | ReLU | |
输出层1 | 7 | ReLU | |
输出层2 | 1 | Sigmoid |
故障类型 | 生成方法 | 正常状态-0 | 故障等级-1 | 故障等级-2 | 故障等级-3 | 故障等级-4 |
---|---|---|---|---|---|---|
冷凝剂中有非冷凝物 | 按体积充氮 | 0 | 1.00% | 1.70% | 2.40% | 5.70% |
蒸发器水流量下降 | 按百分比减少水流量 | 13.6 kg/s | -10% | -20% | -30% | -40% |
冷凝器水流量下降 | 按百分比减少水流量 | 17.0 kg/s | -10% | -20% | -30% | -40% |
冷凝器结垢 | 在冷凝器中堵塞管道 | 164根管 | 12% | 20% | 30% | 45% |
润滑油过多 | 按百分比过量充油 | 10 kg | 1.00% | 1.70% | 2.40% | 5.70% |
制冷剂过量 | 按百分比过量充注制冷剂 | 136 kg | 10% | 20% | 30% | 40% |
制冷剂泄漏 | 按百分比排放制冷剂 | 136 kg | -10% | -20% | -30% | -40% |
Table 2 Generation methods of 7 typical faults under different fault levels
故障类型 | 生成方法 | 正常状态-0 | 故障等级-1 | 故障等级-2 | 故障等级-3 | 故障等级-4 |
---|---|---|---|---|---|---|
冷凝剂中有非冷凝物 | 按体积充氮 | 0 | 1.00% | 1.70% | 2.40% | 5.70% |
蒸发器水流量下降 | 按百分比减少水流量 | 13.6 kg/s | -10% | -20% | -30% | -40% |
冷凝器水流量下降 | 按百分比减少水流量 | 17.0 kg/s | -10% | -20% | -30% | -40% |
冷凝器结垢 | 在冷凝器中堵塞管道 | 164根管 | 12% | 20% | 30% | 45% |
润滑油过多 | 按百分比过量充油 | 10 kg | 1.00% | 1.70% | 2.40% | 5.70% |
制冷剂过量 | 按百分比过量充注制冷剂 | 136 kg | 10% | 20% | 30% | 40% |
制冷剂泄漏 | 按百分比排放制冷剂 | 136 kg | -10% | -20% | -30% | -40% |
真实标签 | |||
---|---|---|---|
预测标签 | 0 | 1 | |
0 | NTP | NFP | |
1 | NFN | NTN |
Table 3 Description of confusion matrix
真实标签 | |||
---|---|---|---|
预测标签 | 0 | 1 | |
0 | NTP | NFP | |
1 | NFN | NTN |
方法 | 故障诊断的总体准确率/% | 运行时间/ms | |||
---|---|---|---|---|---|
Level 1 | Level 2 | Level 3 | Level 4 | ||
SVM | 49.71 | 75.83 | 88.71 | 97.74 | 852.57 |
GAN-SVM | 89.35 | 95.38 | 97.65 | 98.32 | 1562.54 |
CWGAN-SVM | 86.57 | 96.21 | 97.93 | 98.66 | — |
CWGAN-VAE-SVM | 91.43 | 96.48 | 97.97 | 97.90 | — |
CLCGAN-SVM (传统中心损失) | 92.03 | 96.25 | 98.28 | 97.63 | 1618.54 |
CLCGAN-SVM | 92.48 | 96.65 | 99.03 | 98.70 | 1680.22 |
Table 4 Contrast experiment
方法 | 故障诊断的总体准确率/% | 运行时间/ms | |||
---|---|---|---|---|---|
Level 1 | Level 2 | Level 3 | Level 4 | ||
SVM | 49.71 | 75.83 | 88.71 | 97.74 | 852.57 |
GAN-SVM | 89.35 | 95.38 | 97.65 | 98.32 | 1562.54 |
CWGAN-SVM | 86.57 | 96.21 | 97.93 | 98.66 | — |
CWGAN-VAE-SVM | 91.43 | 96.48 | 97.97 | 97.90 | — |
CLCGAN-SVM (传统中心损失) | 92.03 | 96.25 | 98.28 | 97.63 | 1618.54 |
CLCGAN-SVM | 92.48 | 96.65 | 99.03 | 98.70 | 1680.22 |
1 | Afshari A, Friedrich L. A proposal to introduce tradable energy savings certificates in the emirate of Abu Dhabi[J]. Renewable and Sustainable Energy Reviews, 2016, 55: 1342-1351. |
2 | Katipamula S, Brambley M. Methods for fault detection, diagnostics, and prognostics for building systems—a review (Ⅰ)[J]. HVAC&R Research, 2005, 11(1): 3-25. |
3 | 谢伟. 基于KPCA-LSSVM的冷水机组故障诊断研究[D]. 杭州: 杭州电子科技大学, 2019. |
Xie W. Research on fault diagnosis of chillers based on KPCA-LSSVM[D]. Hangzhou: Hangzhou Dianzi University, 2019. | |
4 | 余绍斌. 基于KECA-ELM的冷水机组故障检测与诊断研究[D]. 杭州: 杭州电子科技大学, 2019. |
Yu S B. Fault detection and diagnosis in chillers based on KECA-ELM[D]. Hangzhou: Hangzhou Dianzi University, 2019. | |
5 | Yan K, Shen W, Mulumba T, et al. ARX model based fault detection and diagnosis for chillers using support vector machines[J]. Energy and Buildings, 2014, 81: 287-295. |
6 | Zhang S, Zhu X, Anduv B, et al. Fault detection and diagnosis for the screw chillers using multi-region XGBoost model[J]. Science and Technology for the Built Environment, 2021, 27(5): 608-623. |
7 | Xia Y D, Ding Q, Jiang A P, et al. Incipient fault diagnosis for centrifugal chillers using kernel entropy component analysis and voting based extreme learning machine[J]. Korean Journal of Chemical Engineering, 2022, 39(3): 504-514. |
8 | 王占伟, 王林, 梁坤峰, 等. 基于融合的贝叶斯网络的冷水机组故障诊断[J]. 化工学报, 2018, 69(7): 3167-3173. |
Wang Z W, Wang L, Liang K F, et al. Chiller fault diagnosis based on fusional Bayesian network[J]. CIESC Journal, 2018, 69(7): 3167-3173. | |
9 | Wang Y L, Wang Z W, He S W, et al. A practical chiller fault diagnosis method based on discrete Bayesian network[J]. International Journal of Refrigeration, 2019, 102: 159-167. |
10 | He S W, Wang Z W, Wang Z W, et al. Fault detection and diagnosis of chiller using Bayesian network classifier with probabilistic boundary[J]. Applied Thermal Engineering, 2016, 107: 37-47. |
11 | Han H, Xu L, Cui X Y, et al. Novel chiller fault diagnosis using deep neural network (DNN) with simulated annealing (SA)[J]. International Journal of Refrigeration, 2021, 121: 269-278. |
12 | 刘旭婷, 李益国, 孙栓柱, 等. 基于稀疏局部嵌入深度卷积网络的冷水机组故障诊断方法[J]. 化工学报, 2018, 69(12): 5155-5163. |
Liu X T, Li Y G, Sun S Z, et al. Fault diagnosis of chillers using sparsely local embedding deep convolutional neural network[J]. CIESC Journal, 2018, 69(12): 5155-5163. | |
13 | Ren Z X, Han H, Cui X Y, et al. Application of PSO-LSSVM and hybrid programming to fault diagnosis of refrigeration systems[J]. Science and Technology for the Built Environment, 2021, 27(5): 592-607. |
14 | Han H, Zhang Z, Cui X Y, et al. Ensemble learning with member optimization for fault diagnosis of a building energy system[J]. Energy and Buildings, 2020, 226: 110351. |
15 | 齐咏生, 张海利, 王林, 等. 基于MSPCA-KECA的冷水机组故障监测及诊断[J]. 化工学报, 2017, 68(4): 1499-1508. |
Qi Y S, Zhang H L, Wang L, et al. Fault detection and diagnosis for chillers using MSPCA-KECA[J]. CIESC Journal, 2017, 68(4): 1499-1508. | |
16 | Han H, Cui X Y, Fan Y Q, et al. Least squares support vector machine (LS-SVM)-based chiller fault diagnosis using fault indicative features[J]. Applied Thermal Engineering, 2019, 154: 540-547. |
17 | Zhao Y, Xiao F, Wang S W. An intelligent chiller fault detection and diagnosis methodology using Bayesian belief network[J]. Energy and Buildings, 2013, 57: 278-288. |
18 | Li C D, Shen C X, Zhang H Y, et al. A novel temporal convolutional network via enhancing feature extraction for the chiller fault diagnosis[J]. Journal of Building Engineering, 2021, 42: 103014. |
19 | Gao Y, Han H, Ren Z X, et al. Comprehensive study on sensitive parameters for chiller fault diagnosis[J]. Energy and Buildings, 2021, 251: 111318. |
20 | Lu H L, Cui X Y, Han H, et al. A feature importance ranking based fault diagnosis method for variable-speed screw chiller[J].Science and Technology for the Built Environment, 2022, 28(2): 137-151. |
21 | Zhong C W, Yan K, Dai Y T, et al. Energy efficiency solutions for buildings: automated fault diagnosis of air handling units using generative adversarial networks[J]. Energies, 2019, 12(3): 527. |
22 | 范雨强, 崔晓钰, 韩华, 等. 不平衡数据技术在冷水机组故障诊断中的应用[J]. 工程热物理学报, 2019, 40(6): 1219-1228. |
Fan Y Q, Cui X Y, Han H, et al. Chiller fault diagnosis with the technology of imbalanced data[J]. Journal of Engineering Thermophysics, 2019, 40(6): 1219-1228. | |
23 | Gao J Q, Han H, Ren Z X, et al. Fault diagnosis for building chillers based on data self-production and deep convolutional neural network[J]. Journal of Building Engineering, 2021, 34: 102043. |
24 | Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144. |
25 | Yan K, Chong A, Mo Y C. Generative adversarial network for fault detection diagnosis of chillers[J]. Building and Environment, 2020, 172: 106698. |
26 | Yan K, Ma L L, Dai Y T, et al. Cost-sensitive and sequential feature selection for chiller fault detection and diagnosis[J]. International Journal of Refrigeration, 2018, 86: 401-409. |
27 | Yan K, Su J Y, Huang J, et al. Chiller fault diagnosis based on VAE-enabled generative adversarial networks[J]. IEEE Transactions on Automation Science and Engineering, 2022, 19(1): 387-395. |
28 | Mirza M, Osindero S. Conditional generative adversarial nets[J/OL]. [2022-04-21]. . |
29 | Wen Y D, Zhang K P, Li Z F, et al. A discriminative feature learning approach for deep face recognition[C]//Computer Vision-ECCV 2016. Cham: Springer, 2016: 499-515. |
30 | Noshad M, Zeng Y, Hero A O. Scalable mutual information estimation using dependence graphs[C]// 2019 IEEE International Conference on Acoustics, Speech and Signal Processing. Brighton, UK: IEEE, 2019: 2962-2966. |
31 | Comstock M C, Braun J E. Development of analysis tools for the evaluation of fault detection and diagnostics in chillers[R]. West Lafa yette, IN: Purdue University, 1999. |
[1] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
[2] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[3] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[4] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[5] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[6] | Xuejin GAO, Yuzhuo YAO, Huayun HAN, Yongsheng QI. Fault monitoring of fermentation process based on attention dynamic convolutional autoencoder [J]. CIESC Journal, 2023, 74(6): 2503-2521. |
[7] | Shumin ZHENG, Pengcheng GUO, Jianguo YAN, Shuai WANG, Wenbo LI, Qi ZHOU. Experimental and predictive study on pressure drop of subcooled flow boiling in a mini-channel [J]. CIESC Journal, 2023, 74(4): 1549-1560. |
[8] | Qian MING, Yi GAO, Jian HU, Shengjie LI, Jinjiang WANG. Virtual sensing method for leakage fault of heat exchanger [J]. CIESC Journal, 2023, 74(4): 1836-1846. |
[9] | Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650. |
[10] | Xinyuan WU, Qilei LIU, Boyuan CAO, Lei ZHANG, Jian DU. Group2vec: group vector representation and its property prediction applications based on unsupervised machine learning [J]. CIESC Journal, 2023, 74(3): 1187-1194. |
[11] | Xuerong GU, Shuoshi LIU, Siyu YANG. Research on multi-parameter optimization method based on parallel EGO and surrogate-assisted model [J]. CIESC Journal, 2023, 74(3): 1205-1215. |
[12] | Sheng’an ZHANG, Guilian LIU. Multi-objective optimization of high-efficiency solar water electrolysis hydrogen production system and its performance [J]. CIESC Journal, 2023, 74(3): 1260-1274. |
[13] | Jiahui CHEN, Xinze YANG, Guzhong CHEN, Zhen SONG, Zhiwen QI. A critical discussion on developing molecular property prediction models: density of ionic liquids as example [J]. CIESC Journal, 2023, 74(2): 630-641. |
[14] | Haiou YUAN, Fangjun YE, Shuo ZHANG, Yiqing LUO, Xigang YUAN. Synthesis of heat-integrated distillation sequences with intermediate heat exchangers [J]. CIESC Journal, 2023, 74(2): 796-806. |
[15] | Yalin WANG, Yuqing PAN, Chenliang LIU. Intermittent process monitoring based on GSA-LSTM dynamic structure feature extraction [J]. CIESC Journal, 2022, 73(9): 3994-4002. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||