CIESC Journal ›› 2022, Vol. 73 ›› Issue (9): 4147-4155.DOI: 10.11949/0438-1157.20220494
• Energy and environmental engineering • Previous Articles Next Articles
Jiahui SHEN1,2,3(), Kanhong WANG2, Dawei YU1,3(), Dazhou HU1,3, Yuansong WEI1,3
Received:
2022-04-06
Revised:
2022-06-06
Online:
2022-10-09
Published:
2022-09-05
Contact:
Dawei YU
沈嘉辉1,2,3(), 王侃宏2, 郁达伟1,3(), 胡大洲1,3, 魏源送1,3
通讯作者:
郁达伟
作者简介:
沈嘉辉(1996—),男,硕士研究生, 473545949@qq.com
基金资助:
CLC Number:
Jiahui SHEN, Kanhong WANG, Dawei YU, Dazhou HU, Yuansong WEI. Free ammonia conditioning promoted micro-molecule organics release and methanogenesis of thickened sludge[J]. CIESC Journal, 2022, 73(9): 4147-4155.
沈嘉辉, 王侃宏, 郁达伟, 胡大洲, 魏源送. 游离氨调理污泥厌氧消化优化产甲烷过程与强化有机物释放[J]. 化工学报, 2022, 73(9): 4147-4155.
Add to citation manager EndNote|Ris|BibTeX
样品 | TS/% | VS/% | (VS/TS)/% | TCOD/ (mg·L-1) | SCOD/ (mg·L-1) | 多糖/ (mg·L-1) | 蛋白质/ (mg·L-1) | TAN/ (mg·L-1) | pH | FA/ (mg·L-1) |
---|---|---|---|---|---|---|---|---|---|---|
浓缩污泥 | 1.15 | 0.70 | 60.87 | 3550 | 230 | 8.59 | 20.23 | 103.5 | 7.47 | 20.64 |
接种污泥 | 10.58 | 7.78 | 73.51 | 664 | - | 54.22 | 167.91 | 129.9 | 7.51 | - |
调理污泥① | 1.05 | 0.76 | 72.38 | 5400 | 3850 | 158.3 | 653 | 1863.0 | 7.78 | 24.21 |
Table 1 Basic characteristics of concentrated sludge, inoculated sludge and conditioned sludge
样品 | TS/% | VS/% | (VS/TS)/% | TCOD/ (mg·L-1) | SCOD/ (mg·L-1) | 多糖/ (mg·L-1) | 蛋白质/ (mg·L-1) | TAN/ (mg·L-1) | pH | FA/ (mg·L-1) |
---|---|---|---|---|---|---|---|---|---|---|
浓缩污泥 | 1.15 | 0.70 | 60.87 | 3550 | 230 | 8.59 | 20.23 | 103.5 | 7.47 | 20.64 |
接种污泥 | 10.58 | 7.78 | 73.51 | 664 | - | 54.22 | 167.91 | 129.9 | 7.51 | - |
调理污泥① | 1.05 | 0.76 | 72.38 | 5400 | 3850 | 158.3 | 653 | 1863.0 | 7.78 | 24.21 |
Item | CK | FA2 | FA4 | FA6 | FA8 |
---|---|---|---|---|---|
FAN level/(mg·L-1) | 0 | 200 | 400 | 600 | 800 |
FAN/(mg·L-1) | 24.21±1.83 | 250.78±17.71 | 505.37±34.58 | 751.57±61.12 | 962.43±69.01 |
TAN/(mg·L-1) | 1503.67±58.51 | 1863.00±11.34 | 2054.67±59.25 | 2662.00±65.91 | 2705.50±47.50 |
pH | 7.78±0.02 | 7.83±0.02 | 7.87±0.05 | 7.73±0.01 | 7.80±0.00 |
TCOD/(mg·L-1) | 5400±286 | 5950±579 | 5967±272 | 6600±248 | 7350±100 |
SCOD/(mg·L-1) | 3850±188 | 4050±141 | 4767±586 | 4383±103 | 4475±175 |
ORP/mV | -322.60±6.65 | -360.73±32.46 | -216.40±11.03 | -205.47±12.83 | -204.45±2.15 |
EC/(mS·cm-1) | 16.43±0.15 | 19.14±0.08 | 22.03±0.17 | 25.20±0.00 | 27.70±0.10 |
polysaccharide/(mg·L-1) | 158.30±2.51 | 173.20±19.32 | 175.28±12.02 | 181.46±3.87 | 157.28±2.19 |
protein/(mg·L-1) | 653.80±34.31 | 664.89±97.13 | 682.68±13.48 | 748.91±40.97 | 663.41±43.01 |
TOC/(mg·L-1) | 603.00±104.00 | 589.47±88.51 | 548.97±19.79 | 941.87±381.40 | 639.90±26.50 |
TIC/(mg·L-1) | 3063.00±180.00 | 2981.33±70.5 | 3181.67±200.15 | 3975.00±1102.50 | 3040.50±56.50 |
SMY/(ml CH4·(g VSadded)-1) | 111.11±7.82 | 93.50±4.71 | 115.25±3.08 | 96.08±1.41 | 93.25±1.41 |
BMP∞/(ml CH4·(g VSadded)-1) | 242.84±30.33 | 256.37±17.26 | 299.37±0.76 | 269.45±16.36 | 252.83±3.74 |
Table 2 Property change of surplus sludge after free ammonia conditioning
Item | CK | FA2 | FA4 | FA6 | FA8 |
---|---|---|---|---|---|
FAN level/(mg·L-1) | 0 | 200 | 400 | 600 | 800 |
FAN/(mg·L-1) | 24.21±1.83 | 250.78±17.71 | 505.37±34.58 | 751.57±61.12 | 962.43±69.01 |
TAN/(mg·L-1) | 1503.67±58.51 | 1863.00±11.34 | 2054.67±59.25 | 2662.00±65.91 | 2705.50±47.50 |
pH | 7.78±0.02 | 7.83±0.02 | 7.87±0.05 | 7.73±0.01 | 7.80±0.00 |
TCOD/(mg·L-1) | 5400±286 | 5950±579 | 5967±272 | 6600±248 | 7350±100 |
SCOD/(mg·L-1) | 3850±188 | 4050±141 | 4767±586 | 4383±103 | 4475±175 |
ORP/mV | -322.60±6.65 | -360.73±32.46 | -216.40±11.03 | -205.47±12.83 | -204.45±2.15 |
EC/(mS·cm-1) | 16.43±0.15 | 19.14±0.08 | 22.03±0.17 | 25.20±0.00 | 27.70±0.10 |
polysaccharide/(mg·L-1) | 158.30±2.51 | 173.20±19.32 | 175.28±12.02 | 181.46±3.87 | 157.28±2.19 |
protein/(mg·L-1) | 653.80±34.31 | 664.89±97.13 | 682.68±13.48 | 748.91±40.97 | 663.41±43.01 |
TOC/(mg·L-1) | 603.00±104.00 | 589.47±88.51 | 548.97±19.79 | 941.87±381.40 | 639.90±26.50 |
TIC/(mg·L-1) | 3063.00±180.00 | 2981.33±70.5 | 3181.67±200.15 | 3975.00±1102.50 | 3040.50±56.50 |
SMY/(ml CH4·(g VSadded)-1) | 111.11±7.82 | 93.50±4.71 | 115.25±3.08 | 96.08±1.41 | 93.25±1.41 |
BMP∞/(ml CH4·(g VSadded)-1) | 242.84±30.33 | 256.37±17.26 | 299.37±0.76 | 269.45±16.36 | 252.83±3.74 |
1 | 安叶, 张义斌, 黎攀, 等. 我国市政生活污泥处置现状及经验总结[J]. 给水排水, 2021, 57(S1): 94-98. |
An Y, Zhang Y B, Li P, et al. Current situation and experience summary of municipal sewage sludge treatment and disposal in China[J]. Water & Wastewater Engineering, 2021, 57(S1): 94-98. | |
2 | 刘鑫, 惠秀娟, 唐凤德. 我国典型城市污泥产生量处理处置现状及经济学趋势分析[J]. 环境保护与循环经济, 2021, 41(4): 88-93. |
Liu X, Hui X J, Tang F D. Analysis of current situation and economic trend of treatment and disposal of typical urban sludge production in China[J]. Environmental Protection and Circular Economy, 2021, 41(4): 88-93. | |
3 | 李乔洋. 基于碳减排分析的我国城镇污泥处置现状及发展趋势研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. |
Li Q Y. Current situation and development trend of urban sludge disposal in China based on carbon emission reduction analysis[D]. Harbin: Harbin Institute of Technology, 2020. | |
4 | 韩芸, 曹玉芹, 卓杨, 等. 高含固污泥厌氧消化中Fe/S及pH对原位抑硫效率影响及其交互作用[J]. 环境科学, 2018, 39(1): 269-275. |
Han Y, Cao Y Q, Zhuo Y, et al. Influence on desulfurization efficiency and interactions of Fe/S and pH during H2S in situ depression of high solid anaerobic digestion[J]. Environmental Science, 2018, 39(1): 269-275. | |
5 | 牛雨彤, 刘吉宝, 马爽, 等. 零价铁和微波预处理组合强化污泥厌氧消化[J]. 环境科学, 2019, 40(3): 1431-1438. |
Niu Y T, Liu J B, Ma S, et al. Enhancement for anaerobic digestion of waste activated sludge based on microwave pretreatment combined with zero valent iron[J]. Environmental Science, 2019, 40(3): 1431-1438. | |
6 | Liu X R, Xu Q X, Wang D B, et al. Improved methane production from waste activated sludge by combining free ammonia with heat pretreatment: performance, mechanisms and applications[J]. Bioresource Technology, 2018, 268: 230-236. |
7 | Liu H, Li X, Zhang Z H, et al. Semi-continuous anaerobic digestion of secondary sludge with free ammonia pretreatment: focusing on volatile solids destruction, dewaterability, pathogen removal and its implications[J]. Water Research, 2021, 202: 117481. |
8 | Wei W, Zhou X, Wang D B, et al. Free ammonia pre-treatment of secondary sludge significantly increases anaerobic methane production[J]. Water Research, 2017, 118: 12-19. |
9 | Pan X F, Zhao L X, Li C X, et al. Deep insights into the network of acetate metabolism in anaerobic digestion: focusing on syntrophic acetate oxidation and homoacetogenesis[J]. Water Research, 2021, 190: 116774. |
10 | Schnurer A, Schink B, Svensson B H. Clostridium ultunense sp. nov., a mesophilic bacterium oxidizing acetate in syntrophic association with a hydrogenotrophic methanogenic bacterium[J]. International Journal of Systematic Bacteriology, 1996, 46(4): 1145-1152. |
11 | Wang Y T, Wang J G, Pang J J, et al. Introduction of protonic potential of Brønsted-Lowry acids and bases to the quantification of the energy of proton translocation and elucidation of oxidative phosphorylation[J]. Journal of Electroanalytical Chemistry, 2020, 860: 113909. |
12 | DuBois M, Gilles K A, Hamilton J K, et al. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry (Washington), 1956, 28(3): 350-356. |
13 | Yu D W, Zhang J Y, Chulu B H, et al. Ammonia stress decreased biomarker genes of acetoclastic methanogenesis and second peak of production rates during anaerobic digestion of swine manure[J]. Bioresource Technology, 2020, 317: 124012. |
14 | 王凯丽, 董滨, 戴晓虎. 不同VS比例的黄花和污泥联合厌氧消化的研究[J]. 环境科学与技术, 2014, 37(5): 126-131. |
Wang K L, Dong B, Dai X H. Anaerobic co-digestion of sewage sludge and Solidago canadensis L. with different volatile solid ratios in feedstock[J]. Environmental Science & Technology, 2014, 37(5): 126-131. | |
15 | 刘建伟, 夏雪峰. 不同TS浓度下污水厂剩余污泥和生活垃圾混合厌氧消化特性研究[J]. 安全与环境工程, 2015, 22(3): 60-64, 69. |
Liu J W, Xia X F. Study on the characteristics of anaerobic digestion of mixture of sewage sludge from sewage plant and garbage under different concentrations of TS[J]. Safety and Environmental Engineering, 2015, 22(3): 60-64, 69. | |
16 | Wang D B, Wang Y F, Liu X R, et al. Heat pretreatment assists free ammonia to enhance hydrogen production from waste activated sludge[J]. Bioresource Technology, 2019, 283: 316-325. |
17 | Wang D B, Liu B W, Liu X R, et al. How does free ammonia-based sludge pretreatment improve methane production from anaerobic digestion of waste activated sludge[J]. Chemosphere, 2018, 206: 491-501. |
18 | Wu Q L, Guo W Q, Bao X, et al. Enhancing sludge biodegradability and volatile fatty acid production by tetrakis hydroxymethyl phosphonium sulfate pretreatment[J]. Bioresource Technology, 2017, 239: 518-522. |
19 | Zhang C, Qin Y G, Xu Q X, et al. Free ammonia-based pretreatment promotes short-chain fatty acid production from waste activated sludge[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(7): 9120-9129. |
20 | 杜士林, 李强, 丁婷婷, 等. 沙颍河流域水体中溶解性有机质(DOM)的荧光光谱解析[J]. 环境化学, 2019, 38(9): 2027-2037. |
Du S L, Li Q, Ding T T, et al. Fluorescence spectra analysis of DOM in water of Shaying River Basin[J]. Environmental Chemistry, 2019, 38(9): 2027-2037. | |
21 | 刘博文. 游离氨预处理对污泥厌氧消化的影响机理研究[D]. 长沙: 湖南大学, 2018. |
Liu B W. The effects and mechanism of free ammonia pre-treatment on waste activated sludge during anaerobic digestion[D]. Changsha: Hunan University, 2018. | |
22 | 段玉莹. 游离氨预处理对污泥暗发酵产氢的影响及机理研究[D]. 长沙: 湖南大学, 2019. |
Duan Y Y. Effect of free ammonia pretreatment on hydrogen production from sludge by dark fermentation and its mechanisms[D]. Changsha: Hunan University, 2019. | |
23 | 秦玉格. 游离氨预处理提高污泥厌氧发酵产酸量[D]. 长沙: 湖南大学, 2018. |
Qin Y G. Free ammonia-based pretreatment promotes short-chain fatty acid production from waste activated sludge[D]. Changsha: Hunan University, 2018. | |
24 | Astals S, Peces M, Batstone D J, et al. Characterising and modelling free ammonia and ammonium inhibition in anaerobic systems[J]. Water Research, 2018, 143: 127-135. |
25 | 高连敬, 杜尔登, 崔旭峰, 等. 三维荧光结合荧光区域积分法评估净水厂有机物去除效果[J]. 给水排水, 2012, 48(10): 51-56. |
Gao L J, Du E D, Cui X F, et al. Evaluation of organic matter removal efficiency of water treatment plant by three-dimensional excitation emission matrix combined with fluorescence region integral method[J]. Water & Wastewater Engineering, 2012, 48(10): 51-56. | |
26 | 程寒, 荆肇乾, 张锺一, 等. 厌氧消化过程中氨抑制及其调控策略[J]. 应用化工, 2020, 49(5): 1308-1312. |
Cheng H, Jing Z Q, Zhang Z Y, et al. Ammonia inhibition and its regulation strategy during anaerobic digestion[J]. Applied Chemical Industry, 2020, 49(5): 1308-1312. | |
27 | Costa J C, Barbosa S G, Alves M M, et al. Thermochemical pre- and biological co-treatments to improve hydrolysis and methane production from poultry litter[J]. Bioresource Technology, 2012, 111: 141-147. |
28 | 高文萱, 张克强, 梁军锋, 等. 氨胁迫对猪粪厌氧消化性能的影响[J]. 农业环境科学学报, 2015, 34(10): 1997-2003. |
Gao W X, Zhang K Q, Liang J F, et al. Effects of ammonia stresses on anaerobic digestion of swine manure[J]. Journal of Agro-Environment Science, 2015, 34(10): 1997-2003. |
[1] | Zhe SUN, Huaqiang JIN, Kang LI, Jiangping GU, Yuejin HUANG, Xi SHEN. Fault diagnosis method of refrigeration and air-conditioning system based on digitized knowledge representation [J]. CIESC Journal, 2022, 73(7): 3131-3144. |
[2] | Tianyu YANG, Tianshu GE. Effect of desiccant adsorption isotherm on dehumidification performance of desiccant coated heat exchanger [J]. CIESC Journal, 2022, 73(12): 5367-5375. |
[3] | LIANG Kunfeng, WANG Moran, GAO Meijie, LYU Zhenwei, XU Hongyu, DONG Bin, GAO Fengling. Thermodynamic analysis of performance of integrated thermal management system for pure electric vehicle [J]. CIESC Journal, 2021, 72(S1): 494-502. |
[4] | Yalin LIU, Ke WANG, Lei ZHAO. Numerical analysis on aerodynamically generated sound dipole source characteristics of shunt T-elbow [J]. CIESC Journal, 2020, 71(S1): 194-203. |
[5] | Kun LUO, Xiaodong MAO, Liping PANG. Cockpit thermal control performance of new helicopter heat pump air conditioning system [J]. CIESC Journal, 2020, 71(S1): 187-193. |
[6] | WANG Fang, LI Mengchu, ZHANG Yanling, ZHU Caixia, WANG Shuaiqi. Characteristics of cold storage LNG cold energy utilization air conditioning system for heavy truck under whole road condition [J]. CIESC Journal, 2018, 69(S2): 459-465. |
[7] | SUN Hongwei, YU Xue, LI Weiwei, QI Guoping, MA Juan, LÜ Xintao, LÜ Hui. Inhibitory kinetics of free ammonia on Nitrobacter [J]. CIESC Journal, 2018, 69(10): 4386-4393. |
[8] | ZHOU Zhiyong, WU Qingqing, WEI Zhongshi, LI Chunxia. Secondary heat recovery heat pipe air conditioning system [J]. CIESC Journal, 2017, 68(5): 1823-1832. |
[9] | XIE Li, YIN Zi, YIN Zhixuan, WANG Yuechao, ZHOU Qi. A review on regulation methods of nitrite oxidizing bacteria in one-stage anaerobic ammonia oxidation process [J]. CIESC Journal, 2016, 67(7): 2647-2655. |
[10] | QI Yujiao, BRIDIER Arnaud, DESMOND LE QUEMENER Elie, LÜ Fan, HE Pinjing, BOUCHEZ Théodore. Selective inhibition of methanogens using 2-bromoethanesulfonate for improvement of acetate production from CO2 in bioelectrochemical systems [J]. CIESC Journal, 2016, 67(5): 2033-2040. |
[11] | LI Xing, XU Shiming, LI Jianbo. Absorption refrigeration cycle driven by waste heat using R124-DMAC as working fluids [J]. CIESC Journal, 2015, 66(5): 1883-1890. |
[12] | WU Weidong, TANG Hengbo, MIAO Pengke, ZHANG Hua. Preparation and thermal properties of nano-organic composite phase change materials for cool storage in air-conditioning [J]. CIESC Journal, 2015, 66(3): 1208-1214. |
[13] | XU Qi, DENG Chao, SHI Yafei, XU Xinyu, YU Wenbo, LI Chao, CHEN Ye, LIANG Sha, HU Jingping, HE Shu, WANG Rong, YANG Changzhu, YANG Jiakuan. CFD simulation of chemical conditioning unit of municipal sludge [J]. CIESC Journal, 2015, 66(10): 4145-4154. |
[14] | WU Meirong, ZHANG Rui, ZHOU Jun, XIE Xinxin, YONG Xiaoyu, YAN Zhiying, GE Mingmin, ZHENG Tao. Effect of temperature on methanogens metabolic pathway and structures of predominant bacteria [J]. CIESC Journal, 2014, 65(5): 1602-1606. |
[15] | FANG Xing, JIN Xinqiao, FAN Bo, DU Zhimin, ZENG Xiaoqing. Evaluation on air conditioning’s operating property of airport terminal based on hierarchal cluster [J]. CIESC Journal, 2012, 63(S2): 89-94. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||