CIESC Journal ›› 2016, Vol. 67 ›› Issue (5): 2033-2040.DOI: 10.11949/j.issn.0438-1157.20151517
Previous Articles Next Articles
QI Yujiao1,2, BRIDIER Arnaud2, DESMOND LE QUEMENER Elie2, LÜ Fan1,3, HE Pinjing1,3, BOUCHEZ Théodore2
Received:
2015-10-08
Revised:
2015-11-26
Online:
2016-05-05
Published:
2016-05-05
Supported by:
supported by the French Investissement d'Avenir Program (ANR-10-BTBR-02), the National Natural Science Foundation of China (21177096, 51378375), and the 111 Program.
戚玉娇1,2, BRIDIER Arnaud2, DESMOND LE QUEMENER Elie2, 吕凡1,3, 何品晶1,3, BOUCHEZ Théodore2
通讯作者:
BOUCHEZ Théodore, 何品晶
基金资助:
法国国家科研署基金项目(BIORARE,ANR-10-BTBR-02);国家自然科学基金项目(21177096,51378375);111引智项目。
CLC Number:
QI Yujiao, BRIDIER Arnaud, DESMOND LE QUEMENER Elie, LÜ Fan, HE Pinjing, BOUCHEZ Théodore. Selective inhibition of methanogens using 2-bromoethanesulfonate for improvement of acetate production from CO2 in bioelectrochemical systems[J]. CIESC Journal, 2016, 67(5): 2033-2040.
戚玉娇, BRIDIER Arnaud, DESMOND LE QUEMENER Elie, 吕凡, 何品晶, BOUCHEZ Théodore. 甲烷化抑制剂在微生物电化学合成乙酸系统中的生物抑制效应[J]. 化工学报, 2016, 67(5): 2033-2040.
[1] | RABAEY K, ROZENDAL R A. Microbial electrosynthesis— revisiting the electrical route for microbial production [J]. Nature Reviews Microbiology, 2010, 8 (10):706-716. |
[2] | ROSENBAUM M A, FRANKS A E. Microbial catalysis in bioelectrochemical technologies: status quo, challenges and perspectives [J]. Applied Microbiology and Biotechnology, 2014, 98 (2): 509-518. |
[3] | MARSHALL C W, ROSS D E, FICHOT E B, et al. Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes [J]. Environmental Science & Technology, 2013, 47 (11): 6023-6029. |
[4] | NEVIN K P, WOODARD T L, FRANKS A E, et al. Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds [J]. mBio, 2010, 1 (2): e00103-10. |
[5] | VAN EERTEN-JANSEN M C A A, TER HEIJNE A, BUISMAN C J N, et al. Microbial electrolysis cells for production of methane from CO2: long-term performance and perspectives [J]. International Journal of Energy Research, 2012, 36 (6): 809-819. |
[6] | SOUSSAN L, RIESS J, ERABLE B, et al. Electrochemical reduction of CO2 catalysed by Geobacter sulfurreducens grown on polarized stainless steel cathodes [J]. Electrochemistry Communications, 2013: 2827-2830. |
[7] | LOVLEY D R. Powering microbes with electricity: direct electron transfer from electrodes to microbes [J]. Environmental Microbiology Reports, 2011, 3 (1):27-35. |
[8] | NEVIN K P, HENSLEY S A, FRANKS A E, et al. Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms [J]. Applied and Environmental Microbiology, 2011, 77 (9): 2882-2886. |
[9] | SONG J, KIM Y, LIM M, et al. Microbes as electrochemical CO2 conversion catalysts [J]. ChemSuschem, 2011, 4 (5): 587-590. |
[10] | MARSHALL C W, ROSS D E, FICHOT E B, et al. Electrosynthesis of commodity chemicals by an autotrophic microbial community [J]. Applied and Environmental Microbiology, 2012,78 (23): 8412-8420. |
[11] | WANG Z, LEARY D H, MALANOSKI A P, et al. A previously uncharacterized, nonphotosynthetic member of the chromatiaceae is the primary CO2-fixing constituent in a self-regenerating biocathode [J]. Applied and Environmental Microbiology, 2015, 81 (2): 699-712. |
[12] | JIANG Y, SU M, ZHANG Y, et al. Bioelectrochemical systems for simultaneously production of methane and acetate from carbon dioxide at relatively high rate [J]. International Journal of Hydrogen Energy, 2013, 38 (8): 3497-3502. |
[13] | JOURDIN L, FREGUIA S, DONOSE B C, et al. A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis [J]. Journal of Materials Chemistry A, 2014, 2 (32): 13093-13102. |
[14] | ZAYBAK Z, PISCIOTTA J M, TOKASH J C, et al. Enhanced start-up of anaerobic facultatively autotrophic biocathodes in bioelectrochemical systems [J]. Journal of Biotechnology, 2013, 168 (4): 478-485. |
[15] | KOTSYURBENKO O R, GLAGOLEV M V, NOZHEVNIKOVA A N, et al. Competition between homoacetogenic bacteria and methanogenic archaea for hydrogen at low temperature [J]. Fems Microbiology Ecology, 2001, 38 (2-3): 153-159. |
[16] | CHAE K J, CHOI M J, KIM K Y, et al. Selective inhibition of methanogens for the improvement of biohydrogen production in microbial electrolysis cells [J]. International Journal of Hydrogen Energy, 2010, 35 (24): 13379-13386. |
[17] | CALL D, LOGAN B E. Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane [J]. Environmental Science & Technology, 2008, 42 (9): 3401-3406. |
[18] | WANG A J, LIU W Z, CHENG S A, et al. Source of methane and methods to control its formation in single chamber microbial electrolysis cells [J]. International Journal of Hydrogen Energy, 2009, 34 (9): 3653-3658. |
[19] | HOU Y P, LUO H P, LIU G L, et al. Improved hydrogen production in the microbial electrolysis cell by inhibiting methanogenesis using ultraviolet irradiation [J]. Environmental Science & Technology, 2014, 48 (17): 10482-10488. |
[20] | LIU H, WANG J, WANG A J, et al. Chemical inhibitors of methanogenesis and putative applications [J]. Applied Microbiology and Biotechnology, 2011, 89 (5): 1333-1340. |
[21] | ZHUANG L, CHEN Q, ZHOU S G, et al. Methanogenesis control using 2-bromoethanesulfonate for enhanced power recovery from sewage sludge in air-cathode microbial fuel cells [J]. International Journal of Electrochemical Science, 2012, 7 (7): 6512-6523. |
[22] | ZHU H G, BELAND M. Evaluation of alternative methods of preparing hydrogen producing seeds from digested wastewater sludge [J]. International Journal of Hydrogen Energy, 2006, 31 (14): 1980-1988. |
[23] | SU M, JIANG Y, LI D. Production of acetate from carbon dioxide in bioelectrochemical systems based on autotrophic mixed culture [J]. Journal of Microbiology and Biotechnology, 2013, 23 (8): 1140-1146. |
[24] | EDGAR R C, HAAS B J, CLEMENTE J C, et al. UCHIME improves sensitivity and speed of chimera detection [J]. Bioinformatics, 2011, 27 (16): 2194-2200. |
[25] | CAPORASO J G, KUCZYNSKI J, STOMBAUGH J, et al. QIIME allows analysis of high-throughput community sequencing data [J]. Nature Methods, 2010,7 (5): 335-336. |
[26] | QUAST C, PRUESSE E, YILMAZ P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools [J]. Nucleic Acids Research, 2013, 41 (D1): D590-D596. |
[27] | MODESTRA J A, NAVANEETH B, MOHAN S V. Bio-electrocatalytic reduction of CO2: enrichment of homoacetogens and pH optimization towards enhancement of carboxylic acids biosynthesis [J]. Journal of CO2 Utilization, 2015, 10: 78-87. |
[28] | PATIL S A, ARENDS J B A, VANWONTERGHEM I, et al. Selective enrichment establishes a stable performing community for microbial electrosynthesis of acetate from CO2 [J]. Environmental Science & Technology, 2015, 49 (14): 8833-8843. |
[29] | BAJRACHARYA S, TER HEIJNE A, BENETTON X D, et al. Carbon dioxide reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode [J]. Bioresource Technology, 2015, 195: 14-24. |
[30] | CHENG S A, XING D F, CALL D F, et al. Direct biological conversion of electrical current into methane by electromethanogenesis [J]. Environmental Science & Technology, 2009, 43 (10): 3953-3958. |
[31] | LEE C, KIM J, SHIN S G, et al. Monitoring bacterial and archaeal community shifts in a mesophilic anaerobic batch reactor treating a high-strength organic wastewater [J]. Fems Microbiology Ecology, 2008, 65 (3): 544-554. |
[32] | DIEKERT G, WOHLFARTH G. Metabolism of homoacetogens [J]. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 1994, 66 (1/2/3): 209-221. |
[33] | KOPKE M, HELD C, HUJER S, et al. Clostridium ljungdahlii represents a microbial production platform based on syngas [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107 (29): 13087-13092. |
[34] | ABRINI J, NAVEAU H, NYNS E J. Clostridium autoethanogenum, sp. nov, an anaerobic bacterium that produces ethanol from carbon-monoxide [J]. Archives of Microbiology, 1994, 161 (4): 345-351. |
[35] | LIOU J S C, BALKWILL D L, DRAKE G R, et al. Clostridium carboxidivorans sp nov., a solvent-producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp nov. [J]. International Journal of Systematic and Evolutionary Microbiology, 2005, 55: 2085-2091. |
[36] | WILLEMS A, BUSSE J, GOOR M, et al. Hydrogenophaga, a new genus of hydrogen-oxidizing bacteria that includes Hydrogenophaga- flava comb. nov. (formerly pseudomonas-flava), Hydrogenophaga-Palleronii (formerly Pseudomonas palleronii), Hydrogenophaga Pseudoflava (formerly Pseudomonas pseudoflava and “Pseudomonas- carboxydoflava”), and Hydrogenophaga taeniospiralis (formerly Pseudomonas taeniospiralis) [J]. International Journal of Systematic Bacteriology, 1989, 39 (3): 319-333. |
[37] | THRASH J C, VAN TRUMP J I, WEBER K A, et al. Electrochemical stimulation of microbial perchlorate reduction [J]. Environmental Science & Technology, 2007, 41 (5): 1740-1746. |
[38] | SHEHAB N, LI D, AMY G L, et al. Characterization of bacterial and archaeal communities in air-cathode microbial fuel cells, open circuit and sealed-off reactors [J]. Applied Microbiology and Biotechnology, 2013, 97 (22):9885-9895. |
[39] | REINHOLDHUREK B, HUREK T, GILLIS M, et al. Azoarcus gen. nov., nitrogen-fixing proteobacteria associated with roots of kallar grass (Leptochloa fusca (L.) Kunth), and description of two species, Azoarcus indigens sp. nov. and Azoarcus communis sp. nov. [J]. International Journal of Systematic Bacteriology, 1993, 43 (3): 574-584. |
[40] | WARREN Y A, CITRON D M, MERRIAM C V, et al. Biochemical differentiation and comparison of desulfovibrio species and other phenotypically similar genera [J]. Journal of Clinical Microbiology, 2005, 43 (8): 4041-4045. |
[1] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
[2] | Fei KANG, Weiguang LYU, Feng JU, Zhi SUN. Research on discharge path and evaluation of spent lithium-ion batteries [J]. CIESC Journal, 2023, 74(9): 3903-3911. |
[3] | Hao GU, Fujian ZHANG, Zhen LIU, Wenxuan ZHOU, Peng ZHANG, Zhongqiang ZHANG. Desalination performance and mechanism of porous graphene membrane in temporal dimension under mechanical-electrical coupling [J]. CIESC Journal, 2023, 74(5): 2067-2074. |
[4] | Zheng ZHANG, Yongping HE, Haidong SUN, Rongzi ZHANG, Zhengping SUN, Jinlan CHEN, Yixuan ZHENG, Xiao DU, Xiaogang HAO. Electrochemically switched ion exchange device with serpentine flow field for selective extraction of lithium [J]. CIESC Journal, 2023, 74(5): 2022-2033. |
[5] | Zijian WANG, Ming KE, Jiahan LI, Shuting LI, Jinru SUN, Yanbing TONG, Zhiping ZHAO, Jiaying LIU, Lu REN. Progress in preparation and application of short b-axis ZSM-5 molecular sieve [J]. CIESC Journal, 2023, 74(4): 1457-1473. |
[6] | Xiaodan SU, Ganyu ZHU, Huiquan LI, Guangming ZHENG, Ziheng MENG, Fang LI, Yunrui YANG, Benjun XI, Yu CUI. Optimization of wet process phosphoric acid hemihydrate process and crystallization of gypsum [J]. CIESC Journal, 2023, 74(4): 1805-1817. |
[7] | Ruiheng WANG, Pinjing HE, Fan LYU, Hua ZHANG. Parameter comparison and optimization of three solid-liquid separation methods for washed air pollution control residues from municipal solid waste incinerators [J]. CIESC Journal, 2023, 74(4): 1712-1723. |
[8] | Jin YU, Binbin YU, Xinsheng JIANG. Study on quantification methodology and analysis of chemical effects of combustion control based on fictitious species [J]. CIESC Journal, 2023, 74(3): 1303-1312. |
[9] | Zhongqiu ZHANG, Hongguang LI, Yilin SHI. A multi-task learning approach for complex chemical processes based on manual predictive manipulating strategies [J]. CIESC Journal, 2023, 74(3): 1195-1204. |
[10] | Jianghuai ZHANG, Zhong ZHAO. Robust minimum covariance constrained control for C3 hydrogenation process and application [J]. CIESC Journal, 2023, 74(3): 1216-1227. |
[11] | Yin XU, Jie CAI, Lu CHEN, Yu PENG, Fuzhen LIU, Hui ZHANG. Advances in heterogeneous visible light photocatalysis coupled with persulfate activation for water pollution control [J]. CIESC Journal, 2023, 74(3): 995-1009. |
[12] | Weiyi SU, Jiahui DING, Chunli LI, Honghai WANG, Yanjun JIANG. Research progress of enzymatic reactive crystallization [J]. CIESC Journal, 2023, 74(2): 617-629. |
[13] | Muzi LI, Guowei JIA, Yanlong ZHAO, Xin ZHANG, Jianrong LI. The progress of metal-organic frameworks for non-CO2 greenhouse gases capture [J]. CIESC Journal, 2023, 74(1): 365-379. |
[14] | Junying YAN, Huangying WANG, Ruirui LI, Rong FU, Chenxiao JIANG, Yaoming WANG, Tongwen XU. Selective electrodialysis: opportunities and challenges [J]. CIESC Journal, 2023, 74(1): 224-236. |
[15] | Houchuan YU, Teng REN, Ning ZHANG, Xiaobin JIANG, Yan DAI, Xiaopeng ZHANG, Junjiang BAO, Gaohong HE. Advances in two-dimensional graphene oxide membrane for ion selective transport [J]. CIESC Journal, 2023, 74(1): 303-312. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 929
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 658
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||